Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru

Descripción del Articulo

The genotype by environment interaction (IGA) is the main limitation to select the best genotypes for different environments. The objective of this study was to use the additive main effects and multiplicative interaction (AMMI) model to evaluate the IGA of 25 varieties of starchy maize. The informa...

Descripción completa

Detalles Bibliográficos
Autores: García Mendoza, Pedro José, Medina Castro, Darío Emiliano, Prieto Rosales, Gino Paul, Manayay Sánchez, Damián, Ortecho Llanos, Ronald
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
Repositorio:Tayacaja
Lenguaje:español
OAI Identifier:oai:ojs.unat.edu.pe:article/149
Enlace del recurso:https://revistas.unat.edu.pe/index.php/RevTaya/article/view/149
Nivel de acceso:acceso abierto
Materia:Genotype environment interaction
Zea mays L.
adaptability
performance
productive potential
Interacción genotipo ambiente
adaptabilidad
rendimiento
potencial productivo
id REVUNAT_9f6b561378bf0d469a9544b09ea83899
oai_identifier_str oai:ojs.unat.edu.pe:article/149
network_acronym_str REVUNAT
network_name_str Tayacaja
repository_id_str
dc.title.none.fl_str_mv Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
Uso del modelo AMMI para el análisis de la interacción genotipo ambiente en variedades de maíz amiláceo de Tayacaja, Perú
title Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
spellingShingle Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
García Mendoza, Pedro José
Genotype environment interaction
Zea mays L.
adaptability
performance
productive potential
Interacción genotipo ambiente
Zea mays L.
adaptabilidad
rendimiento
potencial productivo
title_short Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
title_full Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
title_fullStr Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
title_full_unstemmed Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
title_sort Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
dc.creator.none.fl_str_mv García Mendoza, Pedro José
Medina Castro, Darío Emiliano
Prieto Rosales, Gino Paul
Manayay Sánchez, Damián
Ortecho Llanos, Ronald
author García Mendoza, Pedro José
author_facet García Mendoza, Pedro José
Medina Castro, Darío Emiliano
Prieto Rosales, Gino Paul
Manayay Sánchez, Damián
Ortecho Llanos, Ronald
author_role author
author2 Medina Castro, Darío Emiliano
Prieto Rosales, Gino Paul
Manayay Sánchez, Damián
Ortecho Llanos, Ronald
author2_role author
author
author
author
dc.subject.none.fl_str_mv Genotype environment interaction
Zea mays L.
adaptability
performance
productive potential
Interacción genotipo ambiente
Zea mays L.
adaptabilidad
rendimiento
potencial productivo
topic Genotype environment interaction
Zea mays L.
adaptability
performance
productive potential
Interacción genotipo ambiente
Zea mays L.
adaptabilidad
rendimiento
potencial productivo
description The genotype by environment interaction (IGA) is the main limitation to select the best genotypes for different environments. The objective of this study was to use the additive main effects and multiplicative interaction (AMMI) model to evaluate the IGA of 25 varieties of starchy maize. The information was generated in four trials established in contrasting environments in the province of Tayacaja, Peru, in the 2019-2020 crop cycle. The 5x5 alpha lattice design was used, with three replications, where the experimental units consisted of two rows 4 m long, with spatial arrangements of 0.80 m between rows and 0.20 m between planting points. The IGA was measured through the grain yield, adjusted to 15% humidity. Once the importance of the IGA in the experiments was verified, the multivariate analysis was carried out, to obtain the singular values ​​of the AMMI terms that were significant for genotypes and environments. The IGA was highly significant and explained around 33% of the phenotypic variation in performance. The AMMI model explained around 92% of the variation due to the IGA, where the first two axes concentrated all this variation and allowed to identify varieties with specific adaptation and others with broad adaptation to the test environments. The results suggest that the AMMI model was appropriate to evaluate the IGA and to identify the best varieties for each test environment.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo revisado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unat.edu.pe/index.php/RevTaya/article/view/149
10.46908/tayacaja.v4i1.149
url https://revistas.unat.edu.pe/index.php/RevTaya/article/view/149
identifier_str_mv 10.46908/tayacaja.v4i1.149
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unat.edu.pe/index.php/RevTaya/article/view/149/117
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
publisher.none.fl_str_mv Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
dc.source.none.fl_str_mv TAYACAJA; Vol. 4 No. 1 (2021): Revista de Investigación Científica Tayacaja (Enero - Junio); 09 - 24
TAYACAJA; Vol. 4 Núm. 1 (2021): Revista de Investigación Científica Tayacaja (Enero - Junio); 09 - 24
Tayacaja; Vol. 4 No. 1 (2021): Tayacaja Scientific Research Journal (January - June); 09 - 24
2617-9156
reponame:Tayacaja
instname:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
instacron:UNAT
instname_str Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
instacron_str UNAT
institution UNAT
reponame_str Tayacaja
collection Tayacaja
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846247632982245376
spelling Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, PeruUso del modelo AMMI para el análisis de la interacción genotipo ambiente en variedades de maíz amiláceo de Tayacaja, PerúGarcía Mendoza, Pedro JoséMedina Castro, Darío EmilianoPrieto Rosales, Gino PaulManayay Sánchez, DamiánOrtecho Llanos, RonaldGenotype environment interactionZea mays L.adaptabilityperformanceproductive potentialInteracción genotipo ambienteZea mays L.adaptabilidadrendimientopotencial productivoThe genotype by environment interaction (IGA) is the main limitation to select the best genotypes for different environments. The objective of this study was to use the additive main effects and multiplicative interaction (AMMI) model to evaluate the IGA of 25 varieties of starchy maize. The information was generated in four trials established in contrasting environments in the province of Tayacaja, Peru, in the 2019-2020 crop cycle. The 5x5 alpha lattice design was used, with three replications, where the experimental units consisted of two rows 4 m long, with spatial arrangements of 0.80 m between rows and 0.20 m between planting points. The IGA was measured through the grain yield, adjusted to 15% humidity. Once the importance of the IGA in the experiments was verified, the multivariate analysis was carried out, to obtain the singular values ​​of the AMMI terms that were significant for genotypes and environments. The IGA was highly significant and explained around 33% of the phenotypic variation in performance. The AMMI model explained around 92% of the variation due to the IGA, where the first two axes concentrated all this variation and allowed to identify varieties with specific adaptation and others with broad adaptation to the test environments. The results suggest that the AMMI model was appropriate to evaluate the IGA and to identify the best varieties for each test environment.La interacción genotipo por ambiente (IGA) resulta la principal limitante para seleccionar los mejores genotipos para diversos ambientes. El objetivo de este estudio fue utilizar el modelo de efectos principales aditivos e interacción multiplicativa (AMMI) para evaluar la IGA de 25 variedades de maíz amiláceo. La información fue generada en cuatro ensayos establecidos en ambientes contrastantes de la provincia de Tayacaja, Perú, en el ciclo del cultivo 2019 – 2020. Se utilizó el diseño alfa látice 5x5, con tres repeticiones, en donde las unidades experimentales estuvieron constituidas por dos hileras de 4 m de longitud, con arreglos espaciales de 0,80 m entre hileras y 0,20 m entre puntos de siembra. La IGA se midió a través del rendimiento de grano, ajustado a 15 % de humedad. Una vez comprobada la importancia de la IGA en los experimentos, se realizó el análisis multivariado, para obtener los valores singulares de los términos AMMI que resultaron significativos para genotipos y ambientes. La IGA resultó altamente significativa y explicó alrededor del 33 % de la variación fenotípica del rendimiento. El modelo AMMI explicó alrededor del 92 % de la variación debida a la IGA, en donde los dos primeros ejes concentraron toda esta variación y permitieron identificar variedades con adaptación específica y otras con amplia adaptación a los ambientes de prueba. Los resultados sugieren que el modelo AMMI fue apropiado para evaluar la IGA y para identificar las mejores variedades para cada ambiente de prueba.Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo2021-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo revisado por paresapplication/pdfhttps://revistas.unat.edu.pe/index.php/RevTaya/article/view/14910.46908/tayacaja.v4i1.149TAYACAJA; Vol. 4 No. 1 (2021): Revista de Investigación Científica Tayacaja (Enero - Junio); 09 - 24TAYACAJA; Vol. 4 Núm. 1 (2021): Revista de Investigación Científica Tayacaja (Enero - Junio); 09 - 24Tayacaja; Vol. 4 No. 1 (2021): Tayacaja Scientific Research Journal (January - June); 09 - 242617-9156reponame:Tayacajainstname:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morilloinstacron:UNATspahttps://revistas.unat.edu.pe/index.php/RevTaya/article/view/149/117Derechos de autor 2021 Pedro José García Mendoza, Darío Emiliano Medina Castro, Gino Paul Prieto Rosales, Damián Manayay Sánchez, Ronald Ortecho Llanoshttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.unat.edu.pe:article/1492023-04-11T15:12:35Z
score 12.773104
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).