Artificial vision in pattern recognition for fruit classification in agrobusiness
Descripción del Articulo
The purpose of this research was to determine the effectivity of applying artificial vision on patterns recognition for the fruits classification in agrobusiness, for this purpose we has used a database with 50 records of 6 fruit varieties with 4 characteristics that are considered for each fruit an...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Nacional Autónoma de Huanta |
Repositorio: | Puriq |
Lenguaje: | español |
OAI Identifier: | oai:ojs2.www.revistas.unah.edu.pe:article/76 |
Enlace del recurso: | https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76 |
Nivel de acceso: | acceso abierto |
Materia: | clasificación de frutas reconocimiento de patrones visión artificial fruit classification pattern recognition artificial vision Classificação de frutas reconhecimento de padrões visão artificial |
id |
REVUNAH_137078cc08d90cd5252f6d69e6daf97f |
---|---|
oai_identifier_str |
oai:ojs2.www.revistas.unah.edu.pe:article/76 |
network_acronym_str |
REVUNAH |
network_name_str |
Puriq |
repository_id_str |
|
spelling |
Artificial vision in pattern recognition for fruit classification in agrobusinessVisión artificial en reconocimiento de patrones para clasificación de frutas en agronegociosVisão mecânica no reconhecimento de padrões para classificação de frutas em agronegóciosSucari León, ReynaldoAroquipa Durán, YolandaQuina Quina, Luz DeliaQuispe Yapo, EdgardoSucari León, AnibalHuanca Torres, Fredy Abelclasificación de frutasreconocimiento de patronesvisión artificialfruit classificationpattern recognitionartificial visionClassificação de frutasreconhecimento de padrõesvisão artificialThe purpose of this research was to determine the effectivity of applying artificial vision on patterns recognition for the fruits classification in agrobusiness, for this purpose we has used a database with 50 records of 6 fruit varieties with 4 characteristics that are considered for each fruit and a sample of 20 fruits, likewise has been used the automatic pattern recognition technique through the Bayesian classifier implemented in Octave, in the experiment it was recognized to the fruits up to 93.33% and erring in other cases 6.67%. Concluding that is effective to apply artificial vision in the pattern recognition classify fruits.La presente tuvo como objetivo determinar la efectividad de aplicar visión artificial en reconocimiento de patrones para la clasificación de frutas en los agronegocios, para ello se ha empleado una base de datos con 50 registros de 6 variedades de frutas donde se consideró 4 características para cada fruta y una muestra de 20 frutas, así mismo se ha empleado la técnica reconocimiento automático de patrones por medio del clasificador bayesiano implementado en Octave, en el experimento se logró reconocer las frutas hasta en un 93.33% y errando en 6.67%. Concluyendo que si es efectivo aplicar la visión artificial en el reconocimiento de patrones para clasificar frutas.O objetivo deste estudo foi determinar a eficácia da aplicação da visão artificial no reconhecimento de padrões para a classificação de frutas no agronegócio, para este fim foi utilizado um banco de dados com 50 registros de 6 variedades de frutas onde foram consideradas 4 características para cada fruta e uma amostra de 20 frutas, da mesma forma a técnica de reconhecimento automático de padrões foi utilizada por meio do classificador Bayesiano implementado em Octave, no experimento foi possível reconhecer as frutas em até 93,33% e errar em 6,67%. A conclusão é que é eficaz aplicar a visão artificial no reconhecimento de padrões para classificar os frutos.Universidad Nacional Autónoma de Huanta2020-04-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmltext/xmlapplication/ziphttps://www.revistas.unah.edu.pe/index.php/puriq/article/view/7610.37073/puriq.2.2.76Puriq; Vol. 2 No. 2 (2020): PURIQ (May-August); 109-118Puriq; Vol. 2 Núm. 2 (2020): PURIQ (mayo-agosto); 109-118Puriq; v. 2 n. 2 (2020): PURIQ (maio-agosto); 109-1182707-36022664-402910.37073/puriq.2.2.2020reponame:Puriqinstname:Universidad Nacional Autónoma de Huantainstacron:UNAHspahttps://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/185https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/559https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/560https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/19710.37073/puriq.2.2.76.g18510.37073/puriq.2.76.g55910.37073/puriq.2.76.g56010.37073/puriq.2.2.76.g197Derechos de autor 2020 Reynaldo Sucari León, Yolanda Aroquipa Durán , Luz Delia Quina Quina , Edgardo Quispe Yapo , Anibal Sucari León , Fredy Abel Huanca Torreshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs2.www.revistas.unah.edu.pe:article/762022-09-26T17:18:30Z |
dc.title.none.fl_str_mv |
Artificial vision in pattern recognition for fruit classification in agrobusiness Visión artificial en reconocimiento de patrones para clasificación de frutas en agronegocios Visão mecânica no reconhecimento de padrões para classificação de frutas em agronegócios |
title |
Artificial vision in pattern recognition for fruit classification in agrobusiness |
spellingShingle |
Artificial vision in pattern recognition for fruit classification in agrobusiness Sucari León, Reynaldo clasificación de frutas reconocimiento de patrones visión artificial fruit classification pattern recognition artificial vision Classificação de frutas reconhecimento de padrões visão artificial |
title_short |
Artificial vision in pattern recognition for fruit classification in agrobusiness |
title_full |
Artificial vision in pattern recognition for fruit classification in agrobusiness |
title_fullStr |
Artificial vision in pattern recognition for fruit classification in agrobusiness |
title_full_unstemmed |
Artificial vision in pattern recognition for fruit classification in agrobusiness |
title_sort |
Artificial vision in pattern recognition for fruit classification in agrobusiness |
dc.creator.none.fl_str_mv |
Sucari León, Reynaldo Aroquipa Durán, Yolanda Quina Quina, Luz Delia Quispe Yapo, Edgardo Sucari León, Anibal Huanca Torres, Fredy Abel |
author |
Sucari León, Reynaldo |
author_facet |
Sucari León, Reynaldo Aroquipa Durán, Yolanda Quina Quina, Luz Delia Quispe Yapo, Edgardo Sucari León, Anibal Huanca Torres, Fredy Abel |
author_role |
author |
author2 |
Aroquipa Durán, Yolanda Quina Quina, Luz Delia Quispe Yapo, Edgardo Sucari León, Anibal Huanca Torres, Fredy Abel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
clasificación de frutas reconocimiento de patrones visión artificial fruit classification pattern recognition artificial vision Classificação de frutas reconhecimento de padrões visão artificial |
topic |
clasificación de frutas reconocimiento de patrones visión artificial fruit classification pattern recognition artificial vision Classificação de frutas reconhecimento de padrões visão artificial |
description |
The purpose of this research was to determine the effectivity of applying artificial vision on patterns recognition for the fruits classification in agrobusiness, for this purpose we has used a database with 50 records of 6 fruit varieties with 4 characteristics that are considered for each fruit and a sample of 20 fruits, likewise has been used the automatic pattern recognition technique through the Bayesian classifier implemented in Octave, in the experiment it was recognized to the fruits up to 93.33% and erring in other cases 6.67%. Concluding that is effective to apply artificial vision in the pattern recognition classify fruits. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76 10.37073/puriq.2.2.76 |
url |
https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76 |
identifier_str_mv |
10.37073/puriq.2.2.76 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/185 https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/559 https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/560 https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/197 10.37073/puriq.2.2.76.g185 10.37073/puriq.2.76.g559 10.37073/puriq.2.76.g560 10.37073/puriq.2.2.76.g197 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html text/xml application/zip |
dc.publisher.none.fl_str_mv |
Universidad Nacional Autónoma de Huanta |
publisher.none.fl_str_mv |
Universidad Nacional Autónoma de Huanta |
dc.source.none.fl_str_mv |
Puriq; Vol. 2 No. 2 (2020): PURIQ (May-August); 109-118 Puriq; Vol. 2 Núm. 2 (2020): PURIQ (mayo-agosto); 109-118 Puriq; v. 2 n. 2 (2020): PURIQ (maio-agosto); 109-118 2707-3602 2664-4029 10.37073/puriq.2.2.2020 reponame:Puriq instname:Universidad Nacional Autónoma de Huanta instacron:UNAH |
instname_str |
Universidad Nacional Autónoma de Huanta |
instacron_str |
UNAH |
institution |
UNAH |
reponame_str |
Puriq |
collection |
Puriq |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1844344777514942464 |
score |
12.821001 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).