Artificial vision in pattern recognition for fruit classification in agrobusiness

Descripción del Articulo

The purpose of this research was to determine the effectivity of applying artificial vision on patterns recognition for the fruits classification in agrobusiness, for this purpose we has used a database with 50 records of 6 fruit varieties with 4 characteristics that are considered for each fruit an...

Descripción completa

Detalles Bibliográficos
Autores: Sucari León, Reynaldo, Aroquipa Durán, Yolanda, Quina Quina, Luz Delia, Quispe Yapo, Edgardo, Sucari León, Anibal, Huanca Torres, Fredy Abel
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Autónoma de Huanta
Repositorio:Puriq
Lenguaje:español
OAI Identifier:oai:ojs2.www.revistas.unah.edu.pe:article/76
Enlace del recurso:https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76
Nivel de acceso:acceso abierto
Materia:clasificación de frutas
reconocimiento de patrones
visión artificial
fruit classification
pattern recognition
artificial vision
Classificação de frutas
reconhecimento de padrões
visão artificial
id REVUNAH_137078cc08d90cd5252f6d69e6daf97f
oai_identifier_str oai:ojs2.www.revistas.unah.edu.pe:article/76
network_acronym_str REVUNAH
network_name_str Puriq
repository_id_str
spelling Artificial vision in pattern recognition for fruit classification in agrobusinessVisión artificial en reconocimiento de patrones para clasificación de frutas en agronegociosVisão mecânica no reconhecimento de padrões para classificação de frutas em agronegóciosSucari León, ReynaldoAroquipa Durán, YolandaQuina Quina, Luz DeliaQuispe Yapo, EdgardoSucari León, AnibalHuanca Torres, Fredy Abelclasificación de frutasreconocimiento de patronesvisión artificialfruit classificationpattern recognitionartificial visionClassificação de frutasreconhecimento de padrõesvisão artificialThe purpose of this research was to determine the effectivity of applying artificial vision on patterns recognition for the fruits classification in agrobusiness, for this purpose we has used a database with 50 records of 6 fruit varieties with 4 characteristics that are considered for each fruit and a sample of 20 fruits, likewise has been used the automatic pattern recognition technique through the Bayesian classifier implemented in Octave, in the experiment it was recognized to the fruits up to 93.33% and erring in other cases 6.67%. Concluding that is effective to apply artificial vision in the pattern recognition classify fruits.La presente tuvo como objetivo determinar la efectividad de aplicar visión artificial en reconocimiento de patrones para la clasificación de frutas en los agronegocios, para ello se ha empleado una base de datos con 50 registros de 6 variedades de frutas donde se consideró 4 características para cada fruta y una muestra de 20 frutas, así mismo se ha empleado la técnica reconocimiento automático de patrones por medio del clasificador bayesiano implementado en Octave, en el experimento se logró reconocer las frutas hasta en un 93.33% y errando en 6.67%. Concluyendo que si es efectivo aplicar la visión artificial en el reconocimiento de patrones para clasificar frutas.O objetivo deste estudo foi determinar a eficácia da aplicação da visão artificial no reconhecimento de padrões para a classificação de frutas no agronegócio, para este fim foi utilizado um banco de dados com 50 registros de 6 variedades de frutas onde foram consideradas 4 características para cada fruta e uma amostra de 20 frutas, da mesma forma a técnica de reconhecimento automático de padrões foi utilizada por meio do classificador Bayesiano implementado em Octave, no experimento foi possível reconhecer as frutas em até 93,33% e errar em 6,67%. A conclusão é que é eficaz aplicar a visão artificial no reconhecimento de padrões para classificar os frutos.Universidad Nacional Autónoma de Huanta2020-04-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmltext/xmlapplication/ziphttps://www.revistas.unah.edu.pe/index.php/puriq/article/view/7610.37073/puriq.2.2.76Puriq; Vol. 2 No. 2 (2020): PURIQ (May-August); 109-118Puriq; Vol. 2 Núm. 2 (2020): PURIQ (mayo-agosto); 109-118Puriq; v. 2 n. 2 (2020): PURIQ (maio-agosto); 109-1182707-36022664-402910.37073/puriq.2.2.2020reponame:Puriqinstname:Universidad Nacional Autónoma de Huantainstacron:UNAHspahttps://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/185https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/559https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/560https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/19710.37073/puriq.2.2.76.g18510.37073/puriq.2.76.g55910.37073/puriq.2.76.g56010.37073/puriq.2.2.76.g197Derechos de autor 2020 Reynaldo Sucari León, Yolanda Aroquipa Durán , Luz Delia Quina Quina , Edgardo Quispe Yapo , Anibal Sucari León , Fredy Abel Huanca Torreshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs2.www.revistas.unah.edu.pe:article/762022-09-26T17:18:30Z
dc.title.none.fl_str_mv Artificial vision in pattern recognition for fruit classification in agrobusiness
Visión artificial en reconocimiento de patrones para clasificación de frutas en agronegocios
Visão mecânica no reconhecimento de padrões para classificação de frutas em agronegócios
title Artificial vision in pattern recognition for fruit classification in agrobusiness
spellingShingle Artificial vision in pattern recognition for fruit classification in agrobusiness
Sucari León, Reynaldo
clasificación de frutas
reconocimiento de patrones
visión artificial
fruit classification
pattern recognition
artificial vision
Classificação de frutas
reconhecimento de padrões
visão artificial
title_short Artificial vision in pattern recognition for fruit classification in agrobusiness
title_full Artificial vision in pattern recognition for fruit classification in agrobusiness
title_fullStr Artificial vision in pattern recognition for fruit classification in agrobusiness
title_full_unstemmed Artificial vision in pattern recognition for fruit classification in agrobusiness
title_sort Artificial vision in pattern recognition for fruit classification in agrobusiness
dc.creator.none.fl_str_mv Sucari León, Reynaldo
Aroquipa Durán, Yolanda
Quina Quina, Luz Delia
Quispe Yapo, Edgardo
Sucari León, Anibal
Huanca Torres, Fredy Abel
author Sucari León, Reynaldo
author_facet Sucari León, Reynaldo
Aroquipa Durán, Yolanda
Quina Quina, Luz Delia
Quispe Yapo, Edgardo
Sucari León, Anibal
Huanca Torres, Fredy Abel
author_role author
author2 Aroquipa Durán, Yolanda
Quina Quina, Luz Delia
Quispe Yapo, Edgardo
Sucari León, Anibal
Huanca Torres, Fredy Abel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv clasificación de frutas
reconocimiento de patrones
visión artificial
fruit classification
pattern recognition
artificial vision
Classificação de frutas
reconhecimento de padrões
visão artificial
topic clasificación de frutas
reconocimiento de patrones
visión artificial
fruit classification
pattern recognition
artificial vision
Classificação de frutas
reconhecimento de padrões
visão artificial
description The purpose of this research was to determine the effectivity of applying artificial vision on patterns recognition for the fruits classification in agrobusiness, for this purpose we has used a database with 50 records of 6 fruit varieties with 4 characteristics that are considered for each fruit and a sample of 20 fruits, likewise has been used the automatic pattern recognition technique through the Bayesian classifier implemented in Octave, in the experiment it was recognized to the fruits up to 93.33% and erring in other cases 6.67%. Concluding that is effective to apply artificial vision in the pattern recognition classify fruits.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76
10.37073/puriq.2.2.76
url https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76
identifier_str_mv 10.37073/puriq.2.2.76
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/185
https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/559
https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/560
https://www.revistas.unah.edu.pe/index.php/puriq/article/view/76/197
10.37073/puriq.2.2.76.g185
10.37073/puriq.2.76.g559
10.37073/puriq.2.76.g560
10.37073/puriq.2.2.76.g197
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
text/xml
application/zip
dc.publisher.none.fl_str_mv Universidad Nacional Autónoma de Huanta
publisher.none.fl_str_mv Universidad Nacional Autónoma de Huanta
dc.source.none.fl_str_mv Puriq; Vol. 2 No. 2 (2020): PURIQ (May-August); 109-118
Puriq; Vol. 2 Núm. 2 (2020): PURIQ (mayo-agosto); 109-118
Puriq; v. 2 n. 2 (2020): PURIQ (maio-agosto); 109-118
2707-3602
2664-4029
10.37073/puriq.2.2.2020
reponame:Puriq
instname:Universidad Nacional Autónoma de Huanta
instacron:UNAH
instname_str Universidad Nacional Autónoma de Huanta
instacron_str UNAH
institution UNAH
reponame_str Puriq
collection Puriq
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844344777514942464
score 12.821001
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).