Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms

Descripción del Articulo

Internal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit...

Descripción completa

Detalles Bibliográficos
Autor: Espinoza-Montalvo, Sergio
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/4637
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637
Nivel de acceso:acceso abierto
Materia:Supervised learning
fraud prediction
antisocial personality disorder
internal fraud
Aprendizaje supervisado
predicción de fraude
trastorno antisocial
fraude interno
id REVULIMA_5df845bcf776c9404c9352f2bf919272
oai_identifier_str oai:revistas.ulima.edu.pe:article/4637
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Prediction of applicants who will commit internal fraud in a company using supervised learning algorithmsPredicción de postulantes que cometerán fraude interno en una compañía con algoritmos de aprendizaje supervisadoEspinoza-Montalvo, SergioSupervised learningfraud predictionantisocial personality disorderinternal fraudAprendizaje supervisadopredicción de fraudetrastorno antisocialfraude internoInternal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit fraud during their working period in a company. There are models with high precision level but with a higher error rate to find fraud. After several ex­perimentations, around seven variables which contribute more to the model were found. Some of these variables match those mentioned in studies about antisocial personality disorder. The algorithm with best results was a convolutional neural network with 80% accuracy rate. It is concluded that applicants’ information is important to establish if they will commit internal fraud during their working period in a company.El fraude interno es un gran problema para las empresas, ocasionando pérdidas monetarias importantes. Diversas investigaciones han propuesto mejoras al proceso de selección de personal utilizando minería de datos. El pre­sente trabajo propone utilizar la información histórica de postulantes a una empresa para predecir si cometerán fraude durante su estadía. Existen modelos con un nivel de precisión alto, pero que tienen un error de clasificación mayor para encontrar los casos de fraude. Después de diversas experimentaciones, se identifican alrededor de 7 características de este universo que aportan más al modelo. Algunas de estas variables coinciden con variables mencionadas en la literatura encontrada sobre trastornos antisociales. El algoritmo con mejores resultados es una red neuronal convolucional con 80 % de precisión. Se concluye que hay valor en la información de postulantes para determinar si cometerán fraude interno durante su estadía en la empresa.  Universidad de Lima2019-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/463710.26439/interfases2019.n012.4637Interfases; No. 012 (2019); 49-60Interfases; Núm. 012 (2019); 49-60Interfases; n. 012 (2019); 49-601993-491210.26439/interfases2019.n012reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637/4617Derechos de autor 2020 Interfasesinfo:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/46372023-07-24T13:32:44Z
dc.title.none.fl_str_mv Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
Predicción de postulantes que cometerán fraude interno en una compañía con algoritmos de aprendizaje supervisado
title Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
spellingShingle Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
Espinoza-Montalvo, Sergio
Supervised learning
fraud prediction
antisocial personality disorder
internal fraud
Aprendizaje supervisado
predicción de fraude
trastorno antisocial
fraude interno
title_short Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
title_full Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
title_fullStr Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
title_full_unstemmed Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
title_sort Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
dc.creator.none.fl_str_mv Espinoza-Montalvo, Sergio
author Espinoza-Montalvo, Sergio
author_facet Espinoza-Montalvo, Sergio
author_role author
dc.subject.none.fl_str_mv Supervised learning
fraud prediction
antisocial personality disorder
internal fraud
Aprendizaje supervisado
predicción de fraude
trastorno antisocial
fraude interno
topic Supervised learning
fraud prediction
antisocial personality disorder
internal fraud
Aprendizaje supervisado
predicción de fraude
trastorno antisocial
fraude interno
description Internal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit fraud during their working period in a company. There are models with high precision level but with a higher error rate to find fraud. After several ex­perimentations, around seven variables which contribute more to the model were found. Some of these variables match those mentioned in studies about antisocial personality disorder. The algorithm with best results was a convolutional neural network with 80% accuracy rate. It is concluded that applicants’ information is important to establish if they will commit internal fraud during their working period in a company.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637
10.26439/interfases2019.n012.4637
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637
identifier_str_mv 10.26439/interfases2019.n012.4637
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637/4617
dc.rights.none.fl_str_mv Derechos de autor 2020 Interfases
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Interfases
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 012 (2019); 49-60
Interfases; Núm. 012 (2019); 49-60
Interfases; n. 012 (2019); 49-60
1993-4912
10.26439/interfases2019.n012
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844893189978193920
score 13.02468
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).