Cluster Analysis of Information on Urinary Tract Infections

Descripción del Articulo

Urinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning...

Descripción completa

Detalles Bibliográficos
Autores: Reátegui Rojas, Ruth María, Carrillo Mayanquer, María Irene
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7327
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327
Nivel de acceso:acceso abierto
Materia:artificial intelligence
machine learning
health
inteligencia artificial
aprendizaje de máquina
salud
id REVULIMA_2f62d08d945f9a95c9c9f155933a3a9e
oai_identifier_str oai:ojs.pkp.sfu.ca:article/7327
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Cluster Analysis of Information on Urinary Tract InfectionsAnálisis clúster de información sobre infecciones urinariasReátegui Rojas, Ruth MaríaCarrillo Mayanquer, María IreneReátegui Rojas, Ruth MaríaCarrillo Mayanquer, María IreneReátegui Rojas, Ruth MaríaCarrillo Mayanquer, María Ireneartificial intelligencemachine learninghealthinteligencia artificialaprendizaje de máquinasaludUrinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning technique that allows the identification of groups of patients with similar characteristics. In this work we analyzed information from patients whose anonymized information was extracted from a computer system, all of them are patients suffering from urinary tract infections. Multiple Correspondence Analysis was initially applied and then K-means and DBSCAN algorithms were used separately. The silhouette value of each group identified with the two algorithms was obtained. Patients were differentiated according to the prevalence percentages of sensitivity/resistance to certain antibiotics and the presence of the germs causing the infections.Las infecciones urinarias constituyen el principal motivo de consulta en el servicio de urgencias pediátricas en el mundo, por lo que merecen ser analizadas con técnicas de inteligencia artificial que permitan descubrir patrones basados en información médica y de laboratorio. El análisis clúster es una técnica no supervisada de aprendizaje de máquina que permite identificar grupos de pacientes con características similares. En este trabajo, se analizó información anonimizada de pacientes extraída de un sistema informático, donde todos sufren de infecciones urinarias. Se aplicó inicialmente el análisis de correspondencia múltiple (ACM) para luego utilizar de forma separada los algoritmos K-means y DBSCAN. Se obtuvo el valor de silhouette de cada grupo obtenido con los dos algoritmos. Se logró diferenciar a los pacientes de acuerdo con los porcentajes de prevalencia de sensibilidad/resistencia a ciertos antibióticos y a la presencia de los gérmenes que provocan las infecciones.Universidad de Lima2024-12-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/732710.26439/interfases2024.n020.7327Interfases; No. 020 (2024); 31-46Interfases; Núm. 020 (2024); 31-46Interfases; n. 020 (2024); 31-461993-491210.26439/interfases2024.n020reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7459https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7460info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/73272024-12-27T02:25:19Z
dc.title.none.fl_str_mv Cluster Analysis of Information on Urinary Tract Infections
Análisis clúster de información sobre infecciones urinarias
title Cluster Analysis of Information on Urinary Tract Infections
spellingShingle Cluster Analysis of Information on Urinary Tract Infections
Reátegui Rojas, Ruth María
artificial intelligence
machine learning
health
inteligencia artificial
aprendizaje de máquina
salud
title_short Cluster Analysis of Information on Urinary Tract Infections
title_full Cluster Analysis of Information on Urinary Tract Infections
title_fullStr Cluster Analysis of Information on Urinary Tract Infections
title_full_unstemmed Cluster Analysis of Information on Urinary Tract Infections
title_sort Cluster Analysis of Information on Urinary Tract Infections
dc.creator.none.fl_str_mv Reátegui Rojas, Ruth María
Carrillo Mayanquer, María Irene
Reátegui Rojas, Ruth María
Carrillo Mayanquer, María Irene
Reátegui Rojas, Ruth María
Carrillo Mayanquer, María Irene
author Reátegui Rojas, Ruth María
author_facet Reátegui Rojas, Ruth María
Carrillo Mayanquer, María Irene
author_role author
author2 Carrillo Mayanquer, María Irene
author2_role author
dc.subject.none.fl_str_mv artificial intelligence
machine learning
health
inteligencia artificial
aprendizaje de máquina
salud
topic artificial intelligence
machine learning
health
inteligencia artificial
aprendizaje de máquina
salud
description Urinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning technique that allows the identification of groups of patients with similar characteristics. In this work we analyzed information from patients whose anonymized information was extracted from a computer system, all of them are patients suffering from urinary tract infections. Multiple Correspondence Analysis was initially applied and then K-means and DBSCAN algorithms were used separately. The silhouette value of each group identified with the two algorithms was obtained. Patients were differentiated according to the prevalence percentages of sensitivity/resistance to certain antibiotics and the presence of the germs causing the infections.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327
10.26439/interfases2024.n020.7327
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327
identifier_str_mv 10.26439/interfases2024.n020.7327
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7459
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7460
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 020 (2024); 31-46
Interfases; Núm. 020 (2024); 31-46
Interfases; n. 020 (2024); 31-46
1993-4912
10.26439/interfases2024.n020
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846791802553630720
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).