Cluster Analysis of Information on Urinary Tract Infections
Descripción del Articulo
Urinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de Lima |
| Repositorio: | Revistas - Universidad de Lima |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/7327 |
| Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327 |
| Nivel de acceso: | acceso abierto |
| Materia: | artificial intelligence machine learning health inteligencia artificial aprendizaje de máquina salud |
| id |
REVULIMA_2f62d08d945f9a95c9c9f155933a3a9e |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/7327 |
| network_acronym_str |
REVULIMA |
| network_name_str |
Revistas - Universidad de Lima |
| repository_id_str |
|
| spelling |
Cluster Analysis of Information on Urinary Tract InfectionsAnálisis clúster de información sobre infecciones urinariasReátegui Rojas, Ruth MaríaCarrillo Mayanquer, María IreneReátegui Rojas, Ruth MaríaCarrillo Mayanquer, María IreneReátegui Rojas, Ruth MaríaCarrillo Mayanquer, María Ireneartificial intelligencemachine learninghealthinteligencia artificialaprendizaje de máquinasaludUrinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning technique that allows the identification of groups of patients with similar characteristics. In this work we analyzed information from patients whose anonymized information was extracted from a computer system, all of them are patients suffering from urinary tract infections. Multiple Correspondence Analysis was initially applied and then K-means and DBSCAN algorithms were used separately. The silhouette value of each group identified with the two algorithms was obtained. Patients were differentiated according to the prevalence percentages of sensitivity/resistance to certain antibiotics and the presence of the germs causing the infections.Las infecciones urinarias constituyen el principal motivo de consulta en el servicio de urgencias pediátricas en el mundo, por lo que merecen ser analizadas con técnicas de inteligencia artificial que permitan descubrir patrones basados en información médica y de laboratorio. El análisis clúster es una técnica no supervisada de aprendizaje de máquina que permite identificar grupos de pacientes con características similares. En este trabajo, se analizó información anonimizada de pacientes extraída de un sistema informático, donde todos sufren de infecciones urinarias. Se aplicó inicialmente el análisis de correspondencia múltiple (ACM) para luego utilizar de forma separada los algoritmos K-means y DBSCAN. Se obtuvo el valor de silhouette de cada grupo obtenido con los dos algoritmos. Se logró diferenciar a los pacientes de acuerdo con los porcentajes de prevalencia de sensibilidad/resistencia a ciertos antibióticos y a la presencia de los gérmenes que provocan las infecciones.Universidad de Lima2024-12-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/732710.26439/interfases2024.n020.7327Interfases; No. 020 (2024); 31-46Interfases; Núm. 020 (2024); 31-46Interfases; n. 020 (2024); 31-461993-491210.26439/interfases2024.n020reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7459https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7460info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/73272024-12-27T02:25:19Z |
| dc.title.none.fl_str_mv |
Cluster Analysis of Information on Urinary Tract Infections Análisis clúster de información sobre infecciones urinarias |
| title |
Cluster Analysis of Information on Urinary Tract Infections |
| spellingShingle |
Cluster Analysis of Information on Urinary Tract Infections Reátegui Rojas, Ruth María artificial intelligence machine learning health inteligencia artificial aprendizaje de máquina salud |
| title_short |
Cluster Analysis of Information on Urinary Tract Infections |
| title_full |
Cluster Analysis of Information on Urinary Tract Infections |
| title_fullStr |
Cluster Analysis of Information on Urinary Tract Infections |
| title_full_unstemmed |
Cluster Analysis of Information on Urinary Tract Infections |
| title_sort |
Cluster Analysis of Information on Urinary Tract Infections |
| dc.creator.none.fl_str_mv |
Reátegui Rojas, Ruth María Carrillo Mayanquer, María Irene Reátegui Rojas, Ruth María Carrillo Mayanquer, María Irene Reátegui Rojas, Ruth María Carrillo Mayanquer, María Irene |
| author |
Reátegui Rojas, Ruth María |
| author_facet |
Reátegui Rojas, Ruth María Carrillo Mayanquer, María Irene |
| author_role |
author |
| author2 |
Carrillo Mayanquer, María Irene |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
artificial intelligence machine learning health inteligencia artificial aprendizaje de máquina salud |
| topic |
artificial intelligence machine learning health inteligencia artificial aprendizaje de máquina salud |
| description |
Urinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning technique that allows the identification of groups of patients with similar characteristics. In this work we analyzed information from patients whose anonymized information was extracted from a computer system, all of them are patients suffering from urinary tract infections. Multiple Correspondence Analysis was initially applied and then K-means and DBSCAN algorithms were used separately. The silhouette value of each group identified with the two algorithms was obtained. Patients were differentiated according to the prevalence percentages of sensitivity/resistance to certain antibiotics and the presence of the germs causing the infections. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327 10.26439/interfases2024.n020.7327 |
| url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327 |
| identifier_str_mv |
10.26439/interfases2024.n020.7327 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7459 https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7327/7460 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad de Lima |
| publisher.none.fl_str_mv |
Universidad de Lima |
| dc.source.none.fl_str_mv |
Interfases; No. 020 (2024); 31-46 Interfases; Núm. 020 (2024); 31-46 Interfases; n. 020 (2024); 31-46 1993-4912 10.26439/interfases2024.n020 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
Revistas - Universidad de Lima |
| collection |
Revistas - Universidad de Lima |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846791802553630720 |
| score |
13.888049 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).