Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
Descripción del Articulo
Computer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remo...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad de Lima |
| Repositorio: | Revistas - Universidad de Lima |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/6625 |
| Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625 |
| Nivel de acceso: | acceso abierto |
| Materia: | voice biometrics Mel frequency cepstral coefficients spoofing prevention biometría de voz coeficientes cepstrales en las frecuencias de Mel prevención de spoofing |
| id |
REVULIMA_1b23c2812aad176974dedda67e760f70 |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/6625 |
| network_acronym_str |
REVULIMA |
| network_name_str |
Revistas - Universidad de Lima |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls Sistema de identificación biométrico basado en reconocimiento de voz mediante coeficientes cepstrales para detección de spoofing en llamadas telefónicas |
| title |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls |
| spellingShingle |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls Guzman Zumaeta, Alberto Karel voice biometrics Mel frequency cepstral coefficients spoofing prevention biometría de voz coeficientes cepstrales en las frecuencias de Mel prevención de spoofing |
| title_short |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls |
| title_full |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls |
| title_fullStr |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls |
| title_full_unstemmed |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls |
| title_sort |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls |
| dc.creator.none.fl_str_mv |
Guzman Zumaeta, Alberto Karel Guzman Zumaeta, Alberto Karel Guzman Zumaeta, Alberto Karel |
| author |
Guzman Zumaeta, Alberto Karel |
| author_facet |
Guzman Zumaeta, Alberto Karel |
| author_role |
author |
| dc.subject.none.fl_str_mv |
voice biometrics Mel frequency cepstral coefficients spoofing prevention biometría de voz coeficientes cepstrales en las frecuencias de Mel prevención de spoofing |
| topic |
voice biometrics Mel frequency cepstral coefficients spoofing prevention biometría de voz coeficientes cepstrales en las frecuencias de Mel prevención de spoofing |
| description |
Computer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remotely. One of the most widespread computer crimes is Spoofing, which consists of impersonating the identity of a person or entity. The objective is to implement a voice recognition system as a mobile application to identify cases of voice impersonation by Spoofing through telephone calls. For this purpose, the Mel scale cepstral coefficients (MFCC) were used as a classifier for cleaning anomalies in the audios, as well as back-propagation neural networks for the user identification system that works together within a mobile application. In the tests carried out, the proposed system had a success rate of 83.5% with 20 entities that were designed by the author out of a total of 2000 audios with 100 corresponding audios from each author for the respective research work. It is concluded that the system is successful in the field of security since it has an optimal acceptance rate and must have a robust system for the different types of Spoofing that has been collected in this research work. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12-29 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625 10.26439/interfases2023.n018.6625 |
| url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625 |
| identifier_str_mv |
10.26439/interfases2023.n018.6625 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6680 https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6684 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad de Lima |
| publisher.none.fl_str_mv |
Universidad de Lima |
| dc.source.none.fl_str_mv |
Interfases; No. 018 (2023); 235-254 Interfases; Núm. 018 (2023); 235-254 Interfases; n. 018 (2023); 235-254 1993-4912 10.26439/interfases2023.n018 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
Revistas - Universidad de Lima |
| collection |
Revistas - Universidad de Lima |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846791802520076288 |
| spelling |
Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone CallsSistema de identificación biométrico basado en reconocimiento de voz mediante coeficientes cepstrales para detección de spoofing en llamadas telefónicasGuzman Zumaeta, Alberto KarelGuzman Zumaeta, Alberto KarelGuzman Zumaeta, Alberto Karelvoice biometricsMel frequency cepstral coefficientsspoofing preventionbiometría de vozcoeficientes cepstrales en las frecuencias de Melprevención de spoofingComputer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remotely. One of the most widespread computer crimes is Spoofing, which consists of impersonating the identity of a person or entity. The objective is to implement a voice recognition system as a mobile application to identify cases of voice impersonation by Spoofing through telephone calls. For this purpose, the Mel scale cepstral coefficients (MFCC) were used as a classifier for cleaning anomalies in the audios, as well as back-propagation neural networks for the user identification system that works together within a mobile application. In the tests carried out, the proposed system had a success rate of 83.5% with 20 entities that were designed by the author out of a total of 2000 audios with 100 corresponding audios from each author for the respective research work. It is concluded that the system is successful in the field of security since it has an optimal acceptance rate and must have a robust system for the different types of Spoofing that has been collected in this research work.Los delitos informáticos en los sistemas telemáticos de las empresas perjudican a la sociedad porque ocasionan un clima de incertidumbre en los clientes, quienes tienen la percepción de que el sistema informático encargado de gestionar el servicio o producto a consumir no es tan seguro como para confiar su dinero o hacer transacciones de forma remota. Uno de los delitos informáticos más extendidos es el spoofing, el cual consiste en suplantar la identidad de una persona o una entidad. El objetivo es implementar un sistema de reconocimiento de voz, como una aplicación móvil, para que permita identificar casos de suplantación de voz por spoofing mediante llamadas telefónicas. Para este propósito, se utilizaron los coeficientes cepstrales en la escala de Mel (MFCC) como clasificadores para la limpieza de anomalías en los audios, así como redes neuronales de retro propagación para el sistema de identificación de usuarios que trabaja en conjunto dentro de un aplicativo móvil. En las pruebas realizadas, el sistema propuesto tuvo una tasa de éxito del 83,5 %. Para diseñar las 20 entidades necesarias en el trabajo de investigación, se utilizó un conjunto de 2000 audios. Estos audios se dividieron en grupos de 100, donde cada grupo correspondía a un autor diferente. Es decir, se contó con 100 audios de voz provenientes de cada uno de los 20 autores distintos, lo que permitió crear y probar las entidades del sistema de manera representativa y diversa. Se concluye que el sistema es exitoso en el ámbito de seguridad, ya que tiene una tasa de aceptación óptima y un sistema robusto para los diferentes tipos de spoofing que se ha logrado recopilar en este trabajo de investigación.Universidad de Lima2023-12-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/662510.26439/interfases2023.n018.6625Interfases; No. 018 (2023); 235-254Interfases; Núm. 018 (2023); 235-254Interfases; n. 018 (2023); 235-2541993-491210.26439/interfases2023.n018reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6680https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6684info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/66252024-05-24T00:29:37Z |
| score |
13.945396 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).