Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls

Descripción del Articulo

Computer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remo...

Descripción completa

Detalles Bibliográficos
Autor: Guzman Zumaeta, Alberto Karel
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/6625
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625
Nivel de acceso:acceso abierto
Materia:voice biometrics
Mel frequency cepstral coefficients
spoofing prevention
biometría de voz
coeficientes cepstrales en las frecuencias de Mel
prevención de spoofing
id REVULIMA_1b23c2812aad176974dedda67e760f70
oai_identifier_str oai:ojs.pkp.sfu.ca:article/6625
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
dc.title.none.fl_str_mv Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
Sistema de identificación biométrico basado en reconocimiento de voz mediante coeficientes cepstrales para detección de spoofing en llamadas telefónicas
title Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
spellingShingle Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
Guzman Zumaeta, Alberto Karel
voice biometrics
Mel frequency cepstral coefficients
spoofing prevention
biometría de voz
coeficientes cepstrales en las frecuencias de Mel
prevención de spoofing
title_short Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
title_full Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
title_fullStr Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
title_full_unstemmed Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
title_sort Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls
dc.creator.none.fl_str_mv Guzman Zumaeta, Alberto Karel
Guzman Zumaeta, Alberto Karel
Guzman Zumaeta, Alberto Karel
author Guzman Zumaeta, Alberto Karel
author_facet Guzman Zumaeta, Alberto Karel
author_role author
dc.subject.none.fl_str_mv voice biometrics
Mel frequency cepstral coefficients
spoofing prevention
biometría de voz
coeficientes cepstrales en las frecuencias de Mel
prevención de spoofing
topic voice biometrics
Mel frequency cepstral coefficients
spoofing prevention
biometría de voz
coeficientes cepstrales en las frecuencias de Mel
prevención de spoofing
description Computer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remotely. One of the most widespread computer crimes is Spoofing, which consists of impersonating the identity of a person or entity. The objective is to implement a voice recognition system as a mobile application to identify cases of voice impersonation by Spoofing through telephone calls. For this purpose, the Mel scale cepstral coefficients (MFCC) were used as a classifier for cleaning anomalies in the audios, as well as back-propagation neural networks for the user identification system that works together within a mobile application. In the tests carried out, the proposed system had a success rate of 83.5% with 20 entities that were designed by the author out of a total of 2000 audios with 100 corresponding audios from each author for the respective research work. It is concluded that the system is successful in the field of security since it has an optimal acceptance rate and must have a robust system for the different types of Spoofing that has been collected in this research work.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625
10.26439/interfases2023.n018.6625
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625
identifier_str_mv 10.26439/interfases2023.n018.6625
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6680
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6684
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 018 (2023); 235-254
Interfases; Núm. 018 (2023); 235-254
Interfases; n. 018 (2023); 235-254
1993-4912
10.26439/interfases2023.n018
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846791802520076288
spelling Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone CallsSistema de identificación biométrico basado en reconocimiento de voz mediante coeficientes cepstrales para detección de spoofing en llamadas telefónicasGuzman Zumaeta, Alberto KarelGuzman Zumaeta, Alberto KarelGuzman Zumaeta, Alberto Karelvoice biometricsMel frequency cepstral coefficientsspoofing preventionbiometría de vozcoeficientes cepstrales en las frecuencias de Melprevención de spoofingComputer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remotely. One of the most widespread computer crimes is Spoofing, which consists of impersonating the identity of a person or entity. The objective is to implement a voice recognition system as a mobile application to identify cases of voice impersonation by Spoofing through telephone calls. For this purpose, the Mel scale cepstral coefficients (MFCC) were used as a classifier for cleaning anomalies in the audios, as well as back-propagation neural networks for the user identification system that works together within a mobile application. In the tests carried out, the proposed system had a success rate of 83.5% with 20 entities that were designed by the author out of a total of 2000 audios with 100 corresponding audios from each author for the respective research work. It is concluded that the system is successful in the field of security since it has an optimal acceptance rate and must have a robust system for the different types of Spoofing that has been collected in this research work.Los delitos informáticos en los sistemas telemáticos de las empresas perjudican a la sociedad porque ocasionan un clima de incertidumbre en los clientes, quienes tienen la percepción de que el sistema informático encargado de gestionar el servicio o producto a consumir no es tan seguro como para confiar su dinero o hacer transacciones de forma remota. Uno de los delitos informáticos más extendidos es el spoofing, el cual consiste en suplantar la identidad de una persona o una entidad. El objetivo es implementar un sistema de reconocimiento de voz, como una aplicación móvil, para que permita identificar casos de suplantación de voz por spoofing mediante llamadas telefónicas. Para este propósito, se utilizaron los coeficientes cepstrales en la escala de Mel (MFCC) como clasificadores para la limpieza de anomalías en los audios, así como redes neuronales de retro propagación para el sistema de identificación de usuarios que trabaja en conjunto dentro de un aplicativo móvil. En las pruebas realizadas, el sistema propuesto tuvo una tasa de éxito del 83,5 %. Para diseñar las 20 entidades necesarias en el trabajo de investigación, se utilizó un conjunto de 2000 audios. Estos audios se dividieron en grupos de 100, donde cada grupo correspondía a un autor diferente. Es decir, se contó con 100 audios de voz provenientes de cada uno de los 20 autores distintos, lo que permitió crear y probar las entidades del sistema de manera representativa y diversa. Se concluye que el sistema es exitoso en el ámbito de seguridad, ya que tiene una tasa de aceptación óptima y un sistema robusto para los diferentes tipos de spoofing que se ha logrado recopilar en este trabajo de investigación.Universidad de Lima2023-12-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/662510.26439/interfases2023.n018.6625Interfases; No. 018 (2023); 235-254Interfases; Núm. 018 (2023); 235-254Interfases; n. 018 (2023); 235-2541993-491210.26439/interfases2023.n018reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6680https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6625/6684info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/66252024-05-24T00:29:37Z
score 13.945396
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).