An Initial Approach to Optimizing the Classification of Students in Large-Scale Assessments

Descripción del Articulo

Most evaluation activities involve classifying students into categories. Especially in high-stakes assessments, such classification carries significant responsibility due to the ensuing consequences. Raw scores do not reflect the nature of measurement error or its implications for student classifica...

Descripción completa

Detalles Bibliográficos
Autor: Pérez León Ibañez, Humberto
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Católica San Pablo
Repositorio:Revistas - Universidad Católica San Pablo
Lenguaje:español
OAI Identifier:oai:revistas.ucsp.edu.pe:article/1702
Enlace del recurso:https://revistas.ucsp.edu.pe/index.php/emomentum/article/view/1702
Nivel de acceso:acceso abierto
Materia:Large-scale assessments
Student classification
Rasch model
Classification accuracy
Measurement error
Evaluaciones de gran escala
Clasificación de estudiantes
Modelo Rasch
Precisión de la clasificación
Error de medición
Descripción
Sumario:Most evaluation activities involve classifying students into categories. Especially in high-stakes assessments, such classification carries significant responsibility due to the ensuing consequences. Raw scores do not reflect the nature of measurement error or its implications for student classification. In contrast, the Rasch model offers an approach based on the relationship between the probability of answering an item correctly and the difference between the student’s ability and the item’s difficulty, an approach that allows for the calculation of standard errors associated with item and person measures. Within this framework, this study aims to investigate whether concentrating items around a cutoff point improves classification accuracy, measured using Rudner’s accuracy index. This relationship was examined under three scenarios with varying levels of student dispersion. The results show: (a) that the greater the concentration of items around the cutoff, the higher the classification accuracy; and (b) that the strength of this association is enhanced in contexts where students’ abilities are more concentrated.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).