Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach

Descripción del Articulo

Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic perform...

Descripción completa

Detalles Bibliográficos
Autores: Salas, Fabio, Caldas, Josué
Formato: artículo
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/28596
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596
Nivel de acceso:acceso abierto
Materia:Academic performance
Machine Learning
Higher Education
Peru
Rendimiento Académico
Educación Superior
Perú
Desempenho Acadêmico
Aprendizado de Máquina
Ensino Superior
id REVPUCP_fb9e79d2152cf0bb2be28a5fa2c2fa1e
oai_identifier_str oai:revistaspuc:article/28596
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approachPrediciendo el rendimiento académico de estudiantes de pregrado en una universidad destacada de Perú: Una aproximación con herramientas de Machine LearningPrevendo o desempenho acadêmico de estudantes de graduação em uma universidade destacada do Peru: Uma abordagem com ferramentas de Machine LearningSalas, FabioCaldas, JosuéAcademic performanceMachine LearningHigher EducationPeruRendimiento AcadémicoMachine LearningEducación SuperiorPerúDesempenho AcadêmicoAprendizado de MáquinaEnsino SuperiorPeruDespite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic performance, many studies overlook LMIC-specific institutional factors or focus on specific courses, limiting their generalizability and policy uses. To address these issues, the authors compiled a comprehensive database using administrative and census data to predict undergraduate academic performance at the Pontifical Catholic University of Peru (PUCP). The study found that the most effective models were tree-based ensembles, particularly Random Forest, with key predictors including prior secondary school performance and university admission test scores. They present a high-performing model using only ten features that can predict future academic performance and potentially aid in reducing student drop-out at PUCP.Aunque la accesibilidad a la educación superior ha mejorado en países de renta baja y media (PRMB), persiste el abandono, especialmente entre estudiantes socioeconómicamente desfavorecidos. A pesar de los avances en modelos de Machine Learning para entender este desafío, muchos estudios descuidan factores institucionales específicos de los PRMB o se centran en cursos específicos, limitando su aplicabilidad y relevancia política. Para abordar esto, creamos una base de datos usando registros administrativos y censales para predecir el rendimiento académico en la Pontificia Universidad Católica del Perú (PUCP). Los modelos más efectivos, entre ellos Random Forest, destacaron predictores como el rendimiento previo y puntuaciones en pruebas de admisión. Presentamos un modelo eficiente con diez características que puede predecir el rendimiento futuro y así aportar a la reducción de la deserción en PUCP.Embora a acessibilidade ao ensino superior tenha melhorado em países de baixa e média renda (PBMR), a evasão persiste, especialmente entre estudantes socioeconomicamente desfavorecidos. Apesar dos avanços em modelos de Machine Learning para compreender esse desafio, muitos estudos negligenciam fatores institucionais específicos dos PBMR ou se concentram em cursos específicos, limitando sua aplicabilidade e relevância política. Para abordar isso, criamos uma base de dados usando registros administrativos e censitários para prever o desempenho acadêmico na Pontifícia Universidade Católica do Peru (PUCP). Os modelos mais eficazes, incluindo o Random Forest, destacaram preditores como desempenho prévio e pontuações em testes de admissão. Apresentamos um modelo eficiente com dez características que pode prever o desempenho futuro e assim contribuir para a redução da evasão na PUCP.Pontificia Universidad Católica del Perú2024-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/educacion/article/view/2859610.18800/educacion.202401.M003Educación; Vol. 33 Núm. 64 (2024); 55-852304-43221019-9403reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/educacion/article/view/28596/26338http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/285962024-07-18T16:40:55Z
dc.title.none.fl_str_mv Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
Prediciendo el rendimiento académico de estudiantes de pregrado en una universidad destacada de Perú: Una aproximación con herramientas de Machine Learning
Prevendo o desempenho acadêmico de estudantes de graduação em uma universidade destacada do Peru: Uma abordagem com ferramentas de Machine Learning
title Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
spellingShingle Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
Salas, Fabio
Academic performance
Machine Learning
Higher Education
Peru
Rendimiento Académico
Machine Learning
Educación Superior
Perú
Desempenho Acadêmico
Aprendizado de Máquina
Ensino Superior
Peru
title_short Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
title_full Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
title_fullStr Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
title_full_unstemmed Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
title_sort Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
dc.creator.none.fl_str_mv Salas, Fabio
Caldas, Josué
author Salas, Fabio
author_facet Salas, Fabio
Caldas, Josué
author_role author
author2 Caldas, Josué
author2_role author
dc.subject.none.fl_str_mv Academic performance
Machine Learning
Higher Education
Peru
Rendimiento Académico
Machine Learning
Educación Superior
Perú
Desempenho Acadêmico
Aprendizado de Máquina
Ensino Superior
Peru
topic Academic performance
Machine Learning
Higher Education
Peru
Rendimiento Académico
Machine Learning
Educación Superior
Perú
Desempenho Acadêmico
Aprendizado de Máquina
Ensino Superior
Peru
description Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic performance, many studies overlook LMIC-specific institutional factors or focus on specific courses, limiting their generalizability and policy uses. To address these issues, the authors compiled a comprehensive database using administrative and census data to predict undergraduate academic performance at the Pontifical Catholic University of Peru (PUCP). The study found that the most effective models were tree-based ensembles, particularly Random Forest, with key predictors including prior secondary school performance and university admission test scores. They present a high-performing model using only ten features that can predict future academic performance and potentially aid in reducing student drop-out at PUCP.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596
10.18800/educacion.202401.M003
url http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596
identifier_str_mv 10.18800/educacion.202401.M003
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596/26338
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Educación; Vol. 33 Núm. 64 (2024); 55-85
2304-4322
1019-9403
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1840900563826376704
score 13.325744
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).