Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
Descripción del Articulo
Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic perform...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | Revistas - Pontificia Universidad Católica del Perú |
Lenguaje: | inglés |
OAI Identifier: | oai:revistaspuc:article/28596 |
Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596 |
Nivel de acceso: | acceso abierto |
Materia: | Academic performance Machine Learning Higher Education Peru Rendimiento Académico Educación Superior Perú Desempenho Acadêmico Aprendizado de Máquina Ensino Superior |
id |
REVPUCP_fb9e79d2152cf0bb2be28a5fa2c2fa1e |
---|---|
oai_identifier_str |
oai:revistaspuc:article/28596 |
network_acronym_str |
REVPUCP |
network_name_str |
Revistas - Pontificia Universidad Católica del Perú |
repository_id_str |
|
spelling |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approachPrediciendo el rendimiento académico de estudiantes de pregrado en una universidad destacada de Perú: Una aproximación con herramientas de Machine LearningPrevendo o desempenho acadêmico de estudantes de graduação em uma universidade destacada do Peru: Uma abordagem com ferramentas de Machine LearningSalas, FabioCaldas, JosuéAcademic performanceMachine LearningHigher EducationPeruRendimiento AcadémicoMachine LearningEducación SuperiorPerúDesempenho AcadêmicoAprendizado de MáquinaEnsino SuperiorPeruDespite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic performance, many studies overlook LMIC-specific institutional factors or focus on specific courses, limiting their generalizability and policy uses. To address these issues, the authors compiled a comprehensive database using administrative and census data to predict undergraduate academic performance at the Pontifical Catholic University of Peru (PUCP). The study found that the most effective models were tree-based ensembles, particularly Random Forest, with key predictors including prior secondary school performance and university admission test scores. They present a high-performing model using only ten features that can predict future academic performance and potentially aid in reducing student drop-out at PUCP.Aunque la accesibilidad a la educación superior ha mejorado en países de renta baja y media (PRMB), persiste el abandono, especialmente entre estudiantes socioeconómicamente desfavorecidos. A pesar de los avances en modelos de Machine Learning para entender este desafío, muchos estudios descuidan factores institucionales específicos de los PRMB o se centran en cursos específicos, limitando su aplicabilidad y relevancia política. Para abordar esto, creamos una base de datos usando registros administrativos y censales para predecir el rendimiento académico en la Pontificia Universidad Católica del Perú (PUCP). Los modelos más efectivos, entre ellos Random Forest, destacaron predictores como el rendimiento previo y puntuaciones en pruebas de admisión. Presentamos un modelo eficiente con diez características que puede predecir el rendimiento futuro y así aportar a la reducción de la deserción en PUCP.Embora a acessibilidade ao ensino superior tenha melhorado em países de baixa e média renda (PBMR), a evasão persiste, especialmente entre estudantes socioeconomicamente desfavorecidos. Apesar dos avanços em modelos de Machine Learning para compreender esse desafio, muitos estudos negligenciam fatores institucionais específicos dos PBMR ou se concentram em cursos específicos, limitando sua aplicabilidade e relevância política. Para abordar isso, criamos uma base de dados usando registros administrativos e censitários para prever o desempenho acadêmico na Pontifícia Universidade Católica do Peru (PUCP). Os modelos mais eficazes, incluindo o Random Forest, destacaram preditores como desempenho prévio e pontuações em testes de admissão. Apresentamos um modelo eficiente com dez características que pode prever o desempenho futuro e assim contribuir para a redução da evasão na PUCP.Pontificia Universidad Católica del Perú2024-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/educacion/article/view/2859610.18800/educacion.202401.M003Educación; Vol. 33 Núm. 64 (2024); 55-852304-43221019-9403reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/educacion/article/view/28596/26338http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/285962024-07-18T16:40:55Z |
dc.title.none.fl_str_mv |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach Prediciendo el rendimiento académico de estudiantes de pregrado en una universidad destacada de Perú: Una aproximación con herramientas de Machine Learning Prevendo o desempenho acadêmico de estudantes de graduação em uma universidade destacada do Peru: Uma abordagem com ferramentas de Machine Learning |
title |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach |
spellingShingle |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach Salas, Fabio Academic performance Machine Learning Higher Education Peru Rendimiento Académico Machine Learning Educación Superior Perú Desempenho Acadêmico Aprendizado de Máquina Ensino Superior Peru |
title_short |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach |
title_full |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach |
title_fullStr |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach |
title_full_unstemmed |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach |
title_sort |
Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach |
dc.creator.none.fl_str_mv |
Salas, Fabio Caldas, Josué |
author |
Salas, Fabio |
author_facet |
Salas, Fabio Caldas, Josué |
author_role |
author |
author2 |
Caldas, Josué |
author2_role |
author |
dc.subject.none.fl_str_mv |
Academic performance Machine Learning Higher Education Peru Rendimiento Académico Machine Learning Educación Superior Perú Desempenho Acadêmico Aprendizado de Máquina Ensino Superior Peru |
topic |
Academic performance Machine Learning Higher Education Peru Rendimiento Académico Machine Learning Educación Superior Perú Desempenho Acadêmico Aprendizado de Máquina Ensino Superior Peru |
description |
Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic performance, many studies overlook LMIC-specific institutional factors or focus on specific courses, limiting their generalizability and policy uses. To address these issues, the authors compiled a comprehensive database using administrative and census data to predict undergraduate academic performance at the Pontifical Catholic University of Peru (PUCP). The study found that the most effective models were tree-based ensembles, particularly Random Forest, with key predictors including prior secondary school performance and university admission test scores. They present a high-performing model using only ten features that can predict future academic performance and potentially aid in reducing student drop-out at PUCP. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596 10.18800/educacion.202401.M003 |
url |
http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596 |
identifier_str_mv |
10.18800/educacion.202401.M003 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596/26338 |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
Educación; Vol. 33 Núm. 64 (2024); 55-85 2304-4322 1019-9403 reponame:Revistas - Pontificia Universidad Católica del Perú instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
Revistas - Pontificia Universidad Católica del Perú |
collection |
Revistas - Pontificia Universidad Católica del Perú |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1840900563826376704 |
score |
13.325744 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).