Thanatomicrobiome and artificial intelligence: forensic microbiology today

Descripción del Articulo

Forensic microbiology enables, among other applications, the estimation of the post-mortem interval (PMI), the identification of individuals, and the location of crime scenes through microbiome analysis and the geolocation of biological remains. Artificial intelligence (AI), together with new sequen...

Descripción completa

Detalles Bibliográficos
Autores: Baltazar Ramos, Javier Iván, Cosme García , Lizbeth, Denis Rodriguez, Edmundo
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de San Martín de Porres
Repositorio:Horizonte médico
Lenguaje:español
OAI Identifier:oai:horizontemedico.usmp.edu.pe:article/3758
Enlace del recurso:https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3758
Nivel de acceso:acceso abierto
Materia:Microbiología Forense
Cambios Post Mortem
Inteligencia Artificial
Aprendizaje Profundo
Cadáver
Forensic Microbiology
Postmortem Changes
Artificial Intelligence
Deep Learning
Cadaver
Descripción
Sumario:Forensic microbiology enables, among other applications, the estimation of the post-mortem interval (PMI), the identification of individuals, and the location of crime scenes through microbiome analysis and the geolocation of biological remains. Artificial intelligence (AI), together with new sequencing techniques, has revolutionized this field, markedly improving the accuracy and speed of forensic analyses. In this study, a systematic review was conducted following PRISMA guidelines. Databases such as PubMed, Scopus, Web of Science, and Google Scholar were searched using keywords related to forensic microbiology, IA, and PMI. Inclusion criteria included studies published in English or Spanish, regardless of the publication date. Exclusion criteria included duplicate studies or those that did not address the thanatomicrobiome analysis using AI tools. After the search and selection process, 20 articles published between 2016 and 2024 were analyzed. The f indings show that some machine learning models, such as Random Forest (RF) and Convolutional Neural Networks (CNN), provide relatively accurate estimates of the PMI. Recent studies focusing on the thanatomicrobiome are emerging as a promising tool in the forensic field, as this microbiome is unique and individualizing. These characteristics render it useful in the various stages of human identification and geolocation in criminal investigations. However, the review underscores the need for studies with larger sample sizes and for exploring the role of microorganisms beyond bacteria, in order to broaden and enhance the research landscape in this emerging field.  
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).