Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model

Descripción del Articulo

Purpose. This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach. Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Na...

Descripción completa

Detalles Bibliográficos
Autores: Doryab, Bahar, Salehi, Mahdi
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad ESAN
Repositorio:Revistas - Universidad ESAN
Lenguaje:inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/114
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/114
Nivel de acceso:acceso abierto
Materia:Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
id REVESAN_e73bb397e48b591cd0913c6bb716a433
oai_identifier_str oai:ojs.pkp.sfu.ca:article/114
network_acronym_str REVESAN
network_name_str Revistas - Universidad ESAN
repository_id_str .
spelling Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model Doryab, Bahar Salehi, Mahdi Abnormal returnsGray theoryNash nonlinear gray Bernoulli modelNonlinear gray Bernoulli modelPurpose. This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach. Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings. Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value. The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market. Doi: https://doi.org/10.1108/JEFAS-06-2017-0075Universidad ESAN2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://revistas.esan.edu.pe/index.php/jefas/article/view/114Journal of Economics, Finance and Administrative Science; Vol. 23 No. 44 (2018): January - June; 95-112Journal of Economics, Finance and Administrative Science; Vol. 23 Núm. 44 (2018): January - June; 95-1122218-06482077-1886reponame:Revistas - Universidad ESANinstname:Universidad ESANinstacron:ESANenghttps://revistas.esan.edu.pe/index.php/jefas/article/view/114/90Copyright (c) 2021 Journal of Economics, Finance and Administrative Sciencehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/1142021-06-20T00:25:52Z
dc.title.none.fl_str_mv Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
spellingShingle Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
Doryab, Bahar
Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
title_short Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_full Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_fullStr Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_full_unstemmed Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_sort Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
dc.creator.none.fl_str_mv Doryab, Bahar
Salehi, Mahdi
author Doryab, Bahar
author_facet Doryab, Bahar
Salehi, Mahdi
author_role author
author2 Salehi, Mahdi
author2_role author
dc.subject.none.fl_str_mv Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
topic Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
description Purpose. This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach. Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings. Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value. The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market. Doi: https://doi.org/10.1108/JEFAS-06-2017-0075
publishDate 2018
dc.date.none.fl_str_mv 2018-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/114
url https://revistas.esan.edu.pe/index.php/jefas/article/view/114
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/114/90
dc.rights.none.fl_str_mv Copyright (c) 2021 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN
publisher.none.fl_str_mv Universidad ESAN
dc.source.none.fl_str_mv Journal of Economics, Finance and Administrative Science; Vol. 23 No. 44 (2018): January - June; 95-112
Journal of Economics, Finance and Administrative Science; Vol. 23 Núm. 44 (2018): January - June; 95-112
2218-0648
2077-1886
reponame:Revistas - Universidad ESAN
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str Revistas - Universidad ESAN
collection Revistas - Universidad ESAN
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845609983329173504
score 12.773333
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).