Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
Descripción del Articulo
Purpose. This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach. Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Na...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Universidad ESAN |
Repositorio: | Revistas - Universidad ESAN |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.pkp.sfu.ca:article/114 |
Enlace del recurso: | https://revistas.esan.edu.pe/index.php/jefas/article/view/114 |
Nivel de acceso: | acceso abierto |
Materia: | Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model |
id |
REVESAN_e73bb397e48b591cd0913c6bb716a433 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/114 |
network_acronym_str |
REVESAN |
network_name_str |
Revistas - Universidad ESAN |
repository_id_str |
. |
spelling |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model Doryab, Bahar Salehi, Mahdi Abnormal returnsGray theoryNash nonlinear gray Bernoulli modelNonlinear gray Bernoulli modelPurpose. This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach. Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings. Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value. The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market. Doi: https://doi.org/10.1108/JEFAS-06-2017-0075Universidad ESAN2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://revistas.esan.edu.pe/index.php/jefas/article/view/114Journal of Economics, Finance and Administrative Science; Vol. 23 No. 44 (2018): January - June; 95-112Journal of Economics, Finance and Administrative Science; Vol. 23 Núm. 44 (2018): January - June; 95-1122218-06482077-1886reponame:Revistas - Universidad ESANinstname:Universidad ESANinstacron:ESANenghttps://revistas.esan.edu.pe/index.php/jefas/article/view/114/90Copyright (c) 2021 Journal of Economics, Finance and Administrative Sciencehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/1142021-06-20T00:25:52Z |
dc.title.none.fl_str_mv |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
spellingShingle |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model Doryab, Bahar Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model |
title_short |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_full |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_fullStr |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_full_unstemmed |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_sort |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
dc.creator.none.fl_str_mv |
Doryab, Bahar Salehi, Mahdi |
author |
Doryab, Bahar |
author_facet |
Doryab, Bahar Salehi, Mahdi |
author_role |
author |
author2 |
Salehi, Mahdi |
author2_role |
author |
dc.subject.none.fl_str_mv |
Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model |
topic |
Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model |
description |
Purpose. This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach. Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings. Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value. The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market. Doi: https://doi.org/10.1108/JEFAS-06-2017-0075 |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/114 |
url |
https://revistas.esan.edu.pe/index.php/jefas/article/view/114 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/114/90 |
dc.rights.none.fl_str_mv |
Copyright (c) 2021 Journal of Economics, Finance and Administrative Science https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Journal of Economics, Finance and Administrative Science https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad ESAN |
publisher.none.fl_str_mv |
Universidad ESAN |
dc.source.none.fl_str_mv |
Journal of Economics, Finance and Administrative Science; Vol. 23 No. 44 (2018): January - June; 95-112 Journal of Economics, Finance and Administrative Science; Vol. 23 Núm. 44 (2018): January - June; 95-112 2218-0648 2077-1886 reponame:Revistas - Universidad ESAN instname:Universidad ESAN instacron:ESAN |
instname_str |
Universidad ESAN |
instacron_str |
ESAN |
institution |
ESAN |
reponame_str |
Revistas - Universidad ESAN |
collection |
Revistas - Universidad ESAN |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845609983329173504 |
score |
12.773333 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).