How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application

Descripción del Articulo

In clinical research, assessing the association between two variables is a critical and fundamental task. Clinical studies aim to establish the effect size of the exposure to a variable on a given outcome. To measure this effect size, various statistical measures are used, among the most common are...

Descripción completa

Detalles Bibliográficos
Autores: Zafra-Tanaka, Jessica Hanae, Taype-Rondan, Alvaro, Fernandez-Guzman, Daniel
Formato: artículo
Fecha de Publicación:2023
Institución:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Repositorio:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Lenguaje:español
OAI Identifier:oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/1935
Enlace del recurso:https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1935
Nivel de acceso:acceso abierto
Materia:Medidas de asociación
Riesgo relativo
Razón de Prevalencia
Odds Ratio
Hazard Ratio
Measures of Association
Relative Risk
Prevalence Ratio
id REVCMH_c39546cebef9bf9e55a3424c7497fcc8
oai_identifier_str oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/1935
network_acronym_str REVCMH
network_name_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository_id_str
spelling How to Understand Measures of Effect in Clinical Research: Practical interpretation and ApplicationCómo entender las medidas de efecto en la investigación clínica: Interpretación práctica y aplicaciónZafra-Tanaka, Jessica Hanae Taype-Rondan, AlvaroFernandez-Guzman, Daniel Medidas de asociaciónRiesgo relativoRazón de PrevalenciaOdds RatioHazard RatioMeasures of AssociationRelative RiskPrevalence RatioOdds RatioHazard RatioIn clinical research, assessing the association between two variables is a critical and fundamental task. Clinical studies aim to establish the effect size of the exposure to a variable on a given outcome. To measure this effect size, various statistical measures are used, among the most common are the prevalence ratio (PR), the relative risk (RR), the odds ratio (OR), the hazard ratio (HR), the incidence rate ratio (IRR), the attributable risk (AR), the number needed to treat (NNT), the mean difference (MD), and the linear regression coefficient (β). Each of these measures has its advantages and limitations, and their choice depends on the type of study and the nature of the data being analyzed. Therefore, it is important to understand the interpretation and use of each of them to perform an appropriate analysis. In this article, our goal is to explain in a practical way how to interpret these measures and how to use their p-values and 95% confidence intervals to assess statistical inference. Understanding how to evaluate the association between two variables is crucial for the design and analysis of high-quality clinical studies. This enables evidence-based decision-making and promotes improvements in patient care.En la investigación clínica, evaluar la asociación entre dos variables es una tarea crítica y fundamental. Los estudios clínicos buscan establecer el tamaño del efecto que tiene la exposición a una variable sobre un desenlace determinado. Para medir este tamaño del efecto, se utilizan diversas medidas estadísticas, entre las más comunes se encuentran la razón de prevalencias (RP), el riesgo relativo (RR), el odds ratio (OR), el Hazard ratio (HR), la razón de tasas de incidencias (RTI), el riesgo atribuible (RA), el número necesario a tratar (NNT), la diferencia de medias (DM) y el coeficiente de regresión lineal (β). Cada una de estas medidas tiene sus ventajas y limitaciones, y su elección depende del tipo de estudio y la naturaleza de los datos que se estén analizando. Por lo tanto, es importante comprender la interpretación y uso de cada una de ellas para realizar un análisis adecuado. En este artículo, nuestro objetivo es explicar de manera práctica cómo interpretar estas medidas y cómo utilizar sus valores p e intervalos de confianza al 95% para evaluar la inferencia estadística. Entender cómo evaluar la asociación entre dos variables es crucial para el diseño y análisis de estudios clínicos de calidad. De este modo, se posibilita la toma de decisiones basadas en evidencia y se promueve la mejora en la atención de pacientes.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2023-12-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/xmlhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/193510.35434/rcmhnaaa.2023.161.1935Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 16 No. Supl. 1 (2023): 1° Supplement | Population epidemiological studies; e1935Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 16 Núm. Supl. 1 (2023): Suplemento 1 | Estudios epidemiológicos poblacionales; e19352227-47312225-510910.35434/rcmhnaaa.2023.161reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1935/1039Derechos de autor 2023 Jessica Hanae Zafra-Tanaka, Alvaro Taype-Rondan, Daniel Fernandez-Guzmanhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/19352025-04-28T04:28:56Z
dc.title.none.fl_str_mv How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
Cómo entender las medidas de efecto en la investigación clínica: Interpretación práctica y aplicación
title How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
spellingShingle How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
Zafra-Tanaka, Jessica Hanae
Medidas de asociación
Riesgo relativo
Razón de Prevalencia
Odds Ratio
Hazard Ratio
Measures of Association
Relative Risk
Prevalence Ratio
Odds Ratio
Hazard Ratio
title_short How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
title_full How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
title_fullStr How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
title_full_unstemmed How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
title_sort How to Understand Measures of Effect in Clinical Research: Practical interpretation and Application
dc.creator.none.fl_str_mv Zafra-Tanaka, Jessica Hanae
Taype-Rondan, Alvaro
Fernandez-Guzman, Daniel
author Zafra-Tanaka, Jessica Hanae
author_facet Zafra-Tanaka, Jessica Hanae
Taype-Rondan, Alvaro
Fernandez-Guzman, Daniel
author_role author
author2 Taype-Rondan, Alvaro
Fernandez-Guzman, Daniel
author2_role author
author
dc.subject.none.fl_str_mv Medidas de asociación
Riesgo relativo
Razón de Prevalencia
Odds Ratio
Hazard Ratio
Measures of Association
Relative Risk
Prevalence Ratio
Odds Ratio
Hazard Ratio
topic Medidas de asociación
Riesgo relativo
Razón de Prevalencia
Odds Ratio
Hazard Ratio
Measures of Association
Relative Risk
Prevalence Ratio
Odds Ratio
Hazard Ratio
description In clinical research, assessing the association between two variables is a critical and fundamental task. Clinical studies aim to establish the effect size of the exposure to a variable on a given outcome. To measure this effect size, various statistical measures are used, among the most common are the prevalence ratio (PR), the relative risk (RR), the odds ratio (OR), the hazard ratio (HR), the incidence rate ratio (IRR), the attributable risk (AR), the number needed to treat (NNT), the mean difference (MD), and the linear regression coefficient (β). Each of these measures has its advantages and limitations, and their choice depends on the type of study and the nature of the data being analyzed. Therefore, it is important to understand the interpretation and use of each of them to perform an appropriate analysis. In this article, our goal is to explain in a practical way how to interpret these measures and how to use their p-values and 95% confidence intervals to assess statistical inference. Understanding how to evaluate the association between two variables is crucial for the design and analysis of high-quality clinical studies. This enables evidence-based decision-making and promotes improvements in patient care.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1935
10.35434/rcmhnaaa.2023.161.1935
url https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1935
identifier_str_mv 10.35434/rcmhnaaa.2023.161.1935
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1935/1039
dc.rights.none.fl_str_mv Derechos de autor 2023 Jessica Hanae Zafra-Tanaka, Alvaro Taype-Rondan, Daniel Fernandez-Guzman
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Jessica Hanae Zafra-Tanaka, Alvaro Taype-Rondan, Daniel Fernandez-Guzman
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/xml
dc.publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
dc.source.none.fl_str_mv Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 16 No. Supl. 1 (2023): 1° Supplement | Population epidemiological studies; e1935
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 16 Núm. Supl. 1 (2023): Suplemento 1 | Estudios epidemiológicos poblacionales; e1935
2227-4731
2225-5109
10.35434/rcmhnaaa.2023.161
reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron:HNAAA
instname_str Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron_str HNAAA
institution HNAAA
reponame_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
collection Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845166746787381248
score 13.277489
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).