A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela

Descripción del Articulo

Introduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to...

Descripción completa

Detalles Bibliográficos
Autores: Cabrera, Maritza, Naranjo-Torres, José, Cabrera, Ángel, Zambrano, Lysien, Rodriguez-Morales, Alfonso J.
Formato: artículo
Fecha de Publicación:2025
Institución:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Repositorio:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Lenguaje:español
OAI Identifier:oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2815
Enlace del recurso:https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815
Nivel de acceso:acceso abierto
Materia:Dengue fever
Machine Learning
Epidemiology
Disease Outbreaks
Fiebre de Dengue
Aprendizaje automático
Epidemiologia, Laboratorio, Hemodiálisis
Brotes de enfermedades
id REVCMH_3bfa9efe95cd3b5735dc07c14731defe
oai_identifier_str oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2815
network_acronym_str REVCMH
network_name_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository_id_str
dc.title.none.fl_str_mv A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
title A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
spellingShingle A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
Cabrera, Maritza
Dengue fever
Machine Learning
Epidemiology
Disease Outbreaks
Fiebre de Dengue
Aprendizaje automático
Epidemiologia, Laboratorio, Hemodiálisis
Brotes de enfermedades
title_short A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
title_full A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
title_fullStr A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
title_full_unstemmed A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
title_sort A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
dc.creator.none.fl_str_mv Cabrera, Maritza
Naranjo-Torres, José
Cabrera, Ángel
Zambrano, Lysien
Rodriguez-Morales, Alfonso J.
author Cabrera, Maritza
author_facet Cabrera, Maritza
Naranjo-Torres, José
Cabrera, Ángel
Zambrano, Lysien
Rodriguez-Morales, Alfonso J.
author_role author
author2 Naranjo-Torres, José
Cabrera, Ángel
Zambrano, Lysien
Rodriguez-Morales, Alfonso J.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Dengue fever
Machine Learning
Epidemiology
Disease Outbreaks
Fiebre de Dengue
Aprendizaje automático
Epidemiologia, Laboratorio, Hemodiálisis
Brotes de enfermedades
topic Dengue fever
Machine Learning
Epidemiology
Disease Outbreaks
Fiebre de Dengue
Aprendizaje automático
Epidemiologia, Laboratorio, Hemodiálisis
Brotes de enfermedades
description Introduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to have tools that allow early detection of outbreaks and, thus, optimize prevention and public health intervention strategies. The main objective is to develop an early warning system for dengue outbreaks using machine learning (ML) techniques. Materials and methods: Several data sources are integrated: epidemiological information, meteorological parameters, El Niño and La Niña (Niño 3.4 Index), socioeconomic and demographic variables. Two ML models were used: Support Vector Machine for regression (SVM-R) and Gaussian Process Regression (GPR). Results: The predictions obtained showed remarkable agreement with the actual dates on which the outbreaks were recorded, warning of the onset of dengue 2 to 3 weeks in advance, depending on the locality. However, in certain municipalities the predictions were less accurate, a finding that agrees with previous studies. Conclusions: In conclusion, the integration of epidemiological, climatological, and socioeconomic variables using ML techniques is presented as a promising tool for establishing.
publishDate 2025
dc.date.none.fl_str_mv 2025-08-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815
10.35434/rcmhnaaa.2025.182.2815
url https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815
identifier_str_mv 10.35434/rcmhnaaa.2025.182.2815
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815/1067
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
dc.source.none.fl_str_mv Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; 2815e
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; 2815e
2227-4731
2225-5109
10.35434/rcmhnaaa.2025.182
reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron:HNAAA
instname_str Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron_str HNAAA
institution HNAAA
reponame_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
collection Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1850239916532826112
spelling A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, VenezuelaA Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, VenezuelaCabrera, MaritzaNaranjo-Torres, JoséCabrera, ÁngelZambrano, LysienRodriguez-Morales, Alfonso J.Dengue feverMachine LearningEpidemiologyDisease OutbreaksFiebre de DengueAprendizaje automáticoEpidemiologia, Laboratorio, HemodiálisisBrotes de enfermedadesIntroduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to have tools that allow early detection of outbreaks and, thus, optimize prevention and public health intervention strategies. The main objective is to develop an early warning system for dengue outbreaks using machine learning (ML) techniques. Materials and methods: Several data sources are integrated: epidemiological information, meteorological parameters, El Niño and La Niña (Niño 3.4 Index), socioeconomic and demographic variables. Two ML models were used: Support Vector Machine for regression (SVM-R) and Gaussian Process Regression (GPR). Results: The predictions obtained showed remarkable agreement with the actual dates on which the outbreaks were recorded, warning of the onset of dengue 2 to 3 weeks in advance, depending on the locality. However, in certain municipalities the predictions were less accurate, a finding that agrees with previous studies. Conclusions: In conclusion, the integration of epidemiological, climatological, and socioeconomic variables using ML techniques is presented as a promising tool for establishing.Introducción: El presente estudio surge como respuesta al sostenido aumento de los brotes de dengue en América Latina, con especial énfasis en el estado Zulia, Venezuela. Esta región, compuesta por 21 municipios, enfrenta una alta vulnerabilidad frente a la transmisión del dengue. Ante este escenario, resulta fundamental contar con herramientas que permitan la detección temprana de los brotes y, de esta forma, optimizar las estrategias de prevención e intervención en salud pública. El objetivo principal es desarrollar un sistema de alerta temprana para brotes de dengue utilizando técnicas de machine learning (ML). Materiales y métodos: Se integran diversas fuentes de datos: información epidemiológica, parámetros meteorológicos, El Niño and La Niña (Niño 3.4 Indice), variables socioeconómicas y demográficas. Se emplearon dos modelos de ML:  Support Vector Machine para regresión (SVM-R) y el Gaussian Process Regression (GPR). Resultados: Las predicciones obtenidas mostraron una notable concordancia con las fechas reales en que se registraron los brotes, advirtiendo la aparición del dengue con una anticipación de 2 a 3 semanas, dependiendo de la localidad. Sin embargo, en ciertos municipios las predicciones fueron menos precisas, hallazgo que concuerda con estudios previos. Conclusiones: En conclusión, la integración de variables epidemiológicas, climatológicas y socioeconómicas mediante técnicas de ML se presenta como una herramienta prometedora para el establecimiento de sistemas de alerta temprana, aunque se recomienda continuar afinando los modelos de manera específica según las particularidades de cada municipio.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2025-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/281510.35434/rcmhnaaa.2025.182.2815Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; 2815eRevista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; 2815e2227-47312225-510910.35434/rcmhnaaa.2025.182reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815/1067Derechos de autor 2025 Maritza Cabrera, José Naranjo-Torres, Ángel Cabrera, Lysien Zambrano, Alfonso J. Rodriguez-Moraleshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/28152025-07-07T16:25:44Z
score 13.364452
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).