A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela
Descripción del Articulo
Introduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| Repositorio: | Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| Lenguaje: | español |
| OAI Identifier: | oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2815 |
| Enlace del recurso: | https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815 |
| Nivel de acceso: | acceso abierto |
| Materia: | Dengue fever Machine Learning Epidemiology Disease Outbreaks Fiebre de Dengue Aprendizaje automático Epidemiologia, Laboratorio, Hemodiálisis Brotes de enfermedades |
| id |
REVCMH_3bfa9efe95cd3b5735dc07c14731defe |
|---|---|
| oai_identifier_str |
oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2815 |
| network_acronym_str |
REVCMH |
| network_name_str |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| title |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| spellingShingle |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela Cabrera, Maritza Dengue fever Machine Learning Epidemiology Disease Outbreaks Fiebre de Dengue Aprendizaje automático Epidemiologia, Laboratorio, Hemodiálisis Brotes de enfermedades |
| title_short |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| title_full |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| title_fullStr |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| title_full_unstemmed |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| title_sort |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela |
| dc.creator.none.fl_str_mv |
Cabrera, Maritza Naranjo-Torres, José Cabrera, Ángel Zambrano, Lysien Rodriguez-Morales, Alfonso J. |
| author |
Cabrera, Maritza |
| author_facet |
Cabrera, Maritza Naranjo-Torres, José Cabrera, Ángel Zambrano, Lysien Rodriguez-Morales, Alfonso J. |
| author_role |
author |
| author2 |
Naranjo-Torres, José Cabrera, Ángel Zambrano, Lysien Rodriguez-Morales, Alfonso J. |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Dengue fever Machine Learning Epidemiology Disease Outbreaks Fiebre de Dengue Aprendizaje automático Epidemiologia, Laboratorio, Hemodiálisis Brotes de enfermedades |
| topic |
Dengue fever Machine Learning Epidemiology Disease Outbreaks Fiebre de Dengue Aprendizaje automático Epidemiologia, Laboratorio, Hemodiálisis Brotes de enfermedades |
| description |
Introduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to have tools that allow early detection of outbreaks and, thus, optimize prevention and public health intervention strategies. The main objective is to develop an early warning system for dengue outbreaks using machine learning (ML) techniques. Materials and methods: Several data sources are integrated: epidemiological information, meteorological parameters, El Niño and La Niña (Niño 3.4 Index), socioeconomic and demographic variables. Two ML models were used: Support Vector Machine for regression (SVM-R) and Gaussian Process Regression (GPR). Results: The predictions obtained showed remarkable agreement with the actual dates on which the outbreaks were recorded, warning of the onset of dengue 2 to 3 weeks in advance, depending on the locality. However, in certain municipalities the predictions were less accurate, a finding that agrees with previous studies. Conclusions: In conclusion, the integration of epidemiological, climatological, and socioeconomic variables using ML techniques is presented as a promising tool for establishing. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815 10.35434/rcmhnaaa.2025.182.2815 |
| url |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815 |
| identifier_str_mv |
10.35434/rcmhnaaa.2025.182.2815 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815/1067 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo |
| publisher.none.fl_str_mv |
Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo |
| dc.source.none.fl_str_mv |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; 2815e Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; 2815e 2227-4731 2225-5109 10.35434/rcmhnaaa.2025.182 reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo instacron:HNAAA |
| instname_str |
Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| instacron_str |
HNAAA |
| institution |
HNAAA |
| reponame_str |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| collection |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1850239916532826112 |
| spelling |
A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, VenezuelaA Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, VenezuelaCabrera, MaritzaNaranjo-Torres, JoséCabrera, ÁngelZambrano, LysienRodriguez-Morales, Alfonso J.Dengue feverMachine LearningEpidemiologyDisease OutbreaksFiebre de DengueAprendizaje automáticoEpidemiologia, Laboratorio, HemodiálisisBrotes de enfermedadesIntroduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to have tools that allow early detection of outbreaks and, thus, optimize prevention and public health intervention strategies. The main objective is to develop an early warning system for dengue outbreaks using machine learning (ML) techniques. Materials and methods: Several data sources are integrated: epidemiological information, meteorological parameters, El Niño and La Niña (Niño 3.4 Index), socioeconomic and demographic variables. Two ML models were used: Support Vector Machine for regression (SVM-R) and Gaussian Process Regression (GPR). Results: The predictions obtained showed remarkable agreement with the actual dates on which the outbreaks were recorded, warning of the onset of dengue 2 to 3 weeks in advance, depending on the locality. However, in certain municipalities the predictions were less accurate, a finding that agrees with previous studies. Conclusions: In conclusion, the integration of epidemiological, climatological, and socioeconomic variables using ML techniques is presented as a promising tool for establishing.Introducción: El presente estudio surge como respuesta al sostenido aumento de los brotes de dengue en América Latina, con especial énfasis en el estado Zulia, Venezuela. Esta región, compuesta por 21 municipios, enfrenta una alta vulnerabilidad frente a la transmisión del dengue. Ante este escenario, resulta fundamental contar con herramientas que permitan la detección temprana de los brotes y, de esta forma, optimizar las estrategias de prevención e intervención en salud pública. El objetivo principal es desarrollar un sistema de alerta temprana para brotes de dengue utilizando técnicas de machine learning (ML). Materiales y métodos: Se integran diversas fuentes de datos: información epidemiológica, parámetros meteorológicos, El Niño and La Niña (Niño 3.4 Indice), variables socioeconómicas y demográficas. Se emplearon dos modelos de ML: Support Vector Machine para regresión (SVM-R) y el Gaussian Process Regression (GPR). Resultados: Las predicciones obtenidas mostraron una notable concordancia con las fechas reales en que se registraron los brotes, advirtiendo la aparición del dengue con una anticipación de 2 a 3 semanas, dependiendo de la localidad. Sin embargo, en ciertos municipios las predicciones fueron menos precisas, hallazgo que concuerda con estudios previos. Conclusiones: En conclusión, la integración de variables epidemiológicas, climatológicas y socioeconómicas mediante técnicas de ML se presenta como una herramienta prometedora para el establecimiento de sistemas de alerta temprana, aunque se recomienda continuar afinando los modelos de manera específica según las particularidades de cada municipio.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2025-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/281510.35434/rcmhnaaa.2025.182.2815Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; 2815eRevista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; 2815e2227-47312225-510910.35434/rcmhnaaa.2025.182reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815/1067Derechos de autor 2025 Maritza Cabrera, José Naranjo-Torres, Ángel Cabrera, Lysien Zambrano, Alfonso J. Rodriguez-Moraleshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/28152025-07-07T16:25:44Z |
| score |
13.364452 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).