Método do ponto proximal inexato para minimização quase-convexa em variedades de Hadamard

Descripción del Articulo

Nesta tese apresentamos um algoritmo inexato de ponto proximal para resolver problemas de otimização quase-convexa em variedades Riemannianas com curvatura seccional não positiva, chamada de variedades de Hadamard. Considerando hipóteses naturais no problema, provamos a convergência da sequência ger...

Descripción completa

Detalles Bibliográficos
Autor: Baygorrea Cusihuallpa, Nancy
Formato: tesis doctoral
Fecha de Publicación:2017
Institución:Superintendencia Nacional de Educación Superior Universitaria
Repositorio:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
Lenguaje:portugués
OAI Identifier:oai:renati.sunedu.gob.pe:renati/7236
Enlace del recurso:https://renati.sunedu.gob.pe/handle/sunedu/3594839
http://hdl.handle.net/11422/8174
Nivel de acceso:acceso abierto
Materia:Método de punto proximal
Variedades de Hadamard
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:Nesta tese apresentamos um algoritmo inexato de ponto proximal para resolver problemas de otimização quase-convexa em variedades Riemannianas com curvatura seccional não positiva, chamada de variedades de Hadamard. Considerando hipóteses naturais no problema, provamos a convergência da sequência gerada pelo método para um ponto crítico do problema. Além disso, provamos que a taxa de convergência do método é linear e superlinear em alguns casos. Objetivando a importância das aplicações tanto na economia quanto na teoria de localização, estendemos o algoritmo para resolver problemas de otimização irrestrita, quase-convexa e multiobjetivo onde provamos, supondo hipóteses razoáveis, a convergência da sequência para um ponto crítico Pareto-Clarke. Finalmente, realizamos alguns experimentos computacionais para validar o método proposto e resultados encontrados.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).