K-Theoretic Version of Fourier-Mukai Transforms Between Crepant Resolutions of Finite Quotient Singularities

Descripción del Articulo

We study crepant resolutions of singularities C³/G, where G is a finite abelian subgroup of SL(3,C). Using derived category methods, Bridgeland, King and Reid proved that the Hilbert scheme of G-clusters (G-Hilb)(C³) is a crepant resolution. Following Craw-Ishii, we study the moduli spaces Mθ of θ-s...

Descripción completa

Detalles Bibliográficos
Autor: Serna Giraldo, Ivan Junnior
Formato: tesis doctoral
Fecha de Publicación:2023
Institución:Superintendencia Nacional de Educación Superior Universitaria
Repositorio:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
Lenguaje:inglés
OAI Identifier:oai:renati.sunedu.gob.pe:renati/7135
Enlace del recurso:https://renati.sunedu.gob.pe/handle/sunedu/3566968
Nivel de acceso:acceso abierto
Materia:Categorías (Matemáticas)
Funtores
Transformada de Fourier-Mukai
Resoluciones crepantes
Correspondencia de McKay
Teoría geométrica de los invariantes
Geometría
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:We study crepant resolutions of singularities C³/G, where G is a finite abelian subgroup of SL(3,C). Using derived category methods, Bridgeland, King and Reid proved that the Hilbert scheme of G-clusters (G-Hilb)(C³) is a crepant resolution. Following Craw-Ishii, we study the moduli spaces Mθ of θ-stable G-constellations, in particular, (G-Hilb)(C³) is a moduli space of this type for a suitable parameters in the GIT-parameter space, while all crepant resolutions are of the form Mθ for some θ. The GIT-parameter space is divided into chambers, and for parameters in adjacent chambers, theMθ spaces are Fourier-Mukai partners. Following Craw-Ishii we study how the Fourier-Mukai transform between partners can induce a change in the tautological line bundles. As an application, we study the case of C³/Z₄. We outline the toric description of the singularity and its crepant resolution. Using Chern classes we determine the cohomological Fourier-Mukai transform between Fourier- Mukai partners, that are moduli spaces for adjacent chambers. In general, for the singularities C³/G, we also determine the cohomological Fourier- Mukai transform as a linear transformation between the cohomology rings.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).