Optimización de dividendos bajo una tasa estocástica y con cambio de régimen

Descripción del Articulo

En el presente trabajo, estudiaremos el problema de optimización de dividendos para una compañía de seguros cuya reserva de efectivo y la tasa de interés de descuento son modelados por procesos de difusión con los coeficientes de la tendencia y la volatilidad dependiendo del régimen económico extern...

Descripción completa

Detalles Bibliográficos
Autor: Anco Blas, Edith Chavely
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/12914
Enlace del recurso:http://hdl.handle.net/20.500.12404/12914
Nivel de acceso:acceso abierto
Materia:Optimización de dividendos
Control óptimo esctocástico
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:En el presente trabajo, estudiaremos el problema de optimización de dividendos para una compañía de seguros cuya reserva de efectivo y la tasa de interés de descuento son modelados por procesos de difusión con los coeficientes de la tendencia y la volatilidad dependiendo del régimen económico externo (condiciones macroeconómicas). Este cambio de régimen está modelado por una cadena de Markov observable de estados finitos. El objetivo es encontrar un esquema de distribución de dividendos que maximice el valor esperado de los dividendos acumulados descontados hasta el tiempo de ruina. Consideramos dos escenarios: (I) Cuando el proceso de dividendos tiene una tasa y esta es uniformemente acotada. En este caso, probaremos un Teorema de verificación que indica que la soluci´on de la ecuación Hamilton-Jacobi-Bellman correspondiente coincide con la función de valor asociada a nuestro problema y que bajo ciertas condiciones una estrategia óptima existe. Además, encontraremos una forma explícita de una estrategia óptima, en el caso de dos regímenes. Esta estrategia consiste en que la compañía pagar´a dividendos con la tasa máxima siempre y cuando el proceso de reservas después de pagar dividendos sea igual o mayor a algunos niveles críticos (barreras) y no pagar nada cuando se encuentre por debajo de estas barreras. (II) En general, cuando el proceso de dividendos es solo cadlag. En este caso, obtenemos una cota superior para la función de valor asociada a nuestro problema. Adema´s, a partir de los resultados obtenidos en la literatura existente en problemas similares y de los resultados obtenidos en el presente trabajo conjeturamos una posible forma de la estrategia óptima.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).