Modelos de regresión robusta para datos de conteo

Descripción del Articulo

En esta tesis se propone un nuevo modelo, denominado Regresión Binomial Negativa con Mixtura en la Dispersión (NB-H), como una alternativa robusta para el análisis de datos de conteo caracterizados por sobredispersión y presencia de valores atípicos. La propuesta se basa en la introducción de una es...

Descripción completa

Detalles Bibliográficos
Autor: Villar Naccha, Christoffer Augusto
Formato: tesis de maestría
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/31523
Enlace del recurso:http://hdl.handle.net/20.500.12404/31523
Nivel de acceso:acceso abierto
Materia:Análisis de regresión--Modelos matemáticos
Estadística robusta
Dispersión (Matemáticas)
Distribución binomial negativa
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:En esta tesis se propone un nuevo modelo, denominado Regresión Binomial Negativa con Mixtura en la Dispersión (NB-H), como una alternativa robusta para el análisis de datos de conteo caracterizados por sobredispersión y presencia de valores atípicos. La propuesta se basa en la introducción de una estructura de mixtura en el parámetro de dispersión de la distribución Binomial Negativa, lo que permite que el modelo sea menos sensible a observaciones extremas, preservando así la estructura general de los datos. Se presentan dos formulaciones específicas, denominadas NB-G y NB-IG, que emplean distribuciones Gamma e Inversa Gamma, respectivamente, como componentes de mezcla. Se adopta un enfoque bayesiano para la estimación de los parámetros, utilizándose simulaciones de cadenas de Markov Monte Carlo (MCMC) implementadas en el lenguaje Stan. Se realiza un estudio de simulación para evaluar la robustez del modelo frente a diferentes escenarios de contaminación, así como dos aplicaciones prácticas con datos reales provenientes del ámbito de salud. Los resultados muestran que las variantes propuestas presentan mejor desempeño respecto al modelo de Regresión Binomial Negativa tradicional en términos de estabilidad y precisión, especialmente en presencia de observaciones atípicas. Esta investigación aporta una estrategia robusta y flexible para el modelado de datos de conteo, capaz de adaptarse a contextos con alta variabilidad y presencia de valores extremos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).