Localización y clasificación de árboles y edificaciones en imágenes aéreas empleando aprendizaje profundo

Descripción del Articulo

La presente tesis muestra el diseño de un detector de árboles y edificaciones en imágenes aéreas elaborado en base a algoritmos de aprendizaje profundo, cuyas redes troncales para la extracción de características son redes neuronales convolucionales. Este trabajo es parte de la tarea de automatizaci...

Descripción completa

Detalles Bibliográficos
Autor: Enriquez Rodriguez, Pamela
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/28167
Enlace del recurso:http://hdl.handle.net/20.500.12404/28167
Nivel de acceso:acceso abierto
Materia:Redes eléctricas
Fotografía aérea
Aprendizaje profundo (Aprendizaje automático)
Algoritmos
Redes neuronales (Computación)
https://purl.org/pe-repo/ocde/ford#2.02.01
Descripción
Sumario:La presente tesis muestra el diseño de un detector de árboles y edificaciones en imágenes aéreas elaborado en base a algoritmos de aprendizaje profundo, cuyas redes troncales para la extracción de características son redes neuronales convolucionales. Este trabajo es parte de la tarea de automatización de un sistema de inspección de fajas de servidumbre que recibe imágenes capturadas por drones. Inicialmente, el trabajo se ha centrado en el etiquetado de árboles y edificaciones en imágenes aéreas para la elaboración del dataset; para ello, se ha utilizado la herramienta Image Labeler de Matlab. Posteriormente, se dividió dicho conjunto de datos en data de entrenamiento (80%), validación (10%) y evaluación (10%); además de emplear la función imageDataAugmenter para incrementar la cantidad de imágenes disponible. Seguidamente, se procedió con el entrenamiento de la red bajo ciertos valores de hiperparámetros y; finalmente, se evaluó la eficacia del detector bajo ciertas métricas como precisión, sensibilidad y precisión promedio media. Los resultados obtenidos muestran que el detector diseñado e implementado en Pytorch delimita correctamente la ubicación de los árboles y edificaciones en imágenes aéreas; además de etiquetarlos con su clase correspondiente. Esto se evidencia en los valores de precisión promedio del 70% para la clase árboles y del 63% para la clase edificaciones, logrando una precisión promedio media del 67%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).