Reliable autonomous vehicle control - a chance constrained stochastic MPC approach

Descripción del Articulo

In recent years, there is a growing interest in the development of systems capable of performing tasks with a high level of autonomy without human supervision. This kind of systems are known as autonomous systems and have been studied in many industrial applications such as automotive, aerospace and...

Descripción completa

Detalles Bibliográficos
Autor: Poma Aliaga, Luis Felipe
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/8834
Enlace del recurso:http://hdl.handle.net/20.500.12404/8834
Nivel de acceso:acceso abierto
Materia:Control predictivo
Control automático
Vehículos
https://purl.org/pe-repo/ocde/ford#2.00.00
id PUCP_bf69b41df2752ddde404938282f9ad3a
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/8834
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
title Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
spellingShingle Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
Poma Aliaga, Luis Felipe
Control predictivo
Control automático
Vehículos
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
title_full Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
title_fullStr Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
title_full_unstemmed Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
title_sort Reliable autonomous vehicle control - a chance constrained stochastic MPC approach
author Poma Aliaga, Luis Felipe
author_facet Poma Aliaga, Luis Felipe
author_role author
dc.contributor.advisor.fl_str_mv Selassie, Abebe Geletu W.
Tafur, Julio C.
dc.contributor.author.fl_str_mv Poma Aliaga, Luis Felipe
dc.subject.es_ES.fl_str_mv Control predictivo
Control automático
Vehículos
topic Control predictivo
Control automático
Vehículos
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description In recent years, there is a growing interest in the development of systems capable of performing tasks with a high level of autonomy without human supervision. This kind of systems are known as autonomous systems and have been studied in many industrial applications such as automotive, aerospace and industries. Autonomous vehicle have gained a lot of interest in recent years and have been considered as a viable solution to minimize the number of road accidents. Due to the complexity of dynamic calculation and the physical restrictions in autonomous vehicle, for example, deterministic model predictive control is an attractive control technique to solve the problem of path planning and obstacle avoidance. However, an autonomous vehicle should be capable of driving adaptively facing deterministic and stochastic events on the road. Therefore, control design for the safe, reliable and autonomous driving should consider vehicle model uncertainty as well uncertain external influences. The stochastic model predictive control scheme provides the most convenient scheme for the control of autonomous vehicles on moving horizons, where chance constraints are to be used to guarantee the reliable fulfillment of trajectory constraints and safety against static and random obstacles. To solve this kind of problems is known as chance constrained model predictive control. Thus, requires the solution of a chance constrained optimization on moving horizon. According to the literature, the major challenge for solving chance constrained optimization is to calculate the value of probability. As a result, approximation methods have been proposed for solving this task. In the present thesis, the chance constrained optimization for the autonomous vehicle is solved through approximation method, where the probability constraint is approximated by using a smooth parametric function. This methodology presents two approaches that allow the solution of chance constrained optimization problems in inner approximation and outer approximation. The aim of this approximation methods is to reformulate the chance constrained optimizations problems as a sequence of nonlinear programs. Finally, three case studies of autonomous vehicle for tracking and obstacle avoidance are presented in this work, in which three levels probability of reliability are considered for the optimal solution.
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-06-19T22:33:50Z
dc.date.available.es_ES.fl_str_mv 2017-06-19T22:33:50Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-06-19
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/8834
url http://hdl.handle.net/20.500.12404/8834
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/13524522-d6ef-4d81-a193-56fbb05028b6/download
https://tesis.pucp.edu.pe/bitstreams/f8c4ecc5-d316-4d47-849e-03aad06b40ba/download
https://tesis.pucp.edu.pe/bitstreams/2e8b6002-d2e2-4398-a26c-5edf45c40c3c/download
https://tesis.pucp.edu.pe/bitstreams/af125e87-0935-4d20-9f20-ccaaeda0653b/download
bitstream.checksum.fl_str_mv 78fbcb528ed107d89fa91de744ce17de
bf1ac2cc65885cd198f6a26bc35fc965
d38e67cf22fa07d0ef537ad0d920170d
f857d64dd9afb8dfe2fdec117b6f3f05
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177103834087424
spelling Selassie, Abebe Geletu W.Tafur, Julio C.Poma Aliaga, Luis Felipe2017-06-19T22:33:50Z2017-06-19T22:33:50Z20172017-06-19http://hdl.handle.net/20.500.12404/8834In recent years, there is a growing interest in the development of systems capable of performing tasks with a high level of autonomy without human supervision. This kind of systems are known as autonomous systems and have been studied in many industrial applications such as automotive, aerospace and industries. Autonomous vehicle have gained a lot of interest in recent years and have been considered as a viable solution to minimize the number of road accidents. Due to the complexity of dynamic calculation and the physical restrictions in autonomous vehicle, for example, deterministic model predictive control is an attractive control technique to solve the problem of path planning and obstacle avoidance. However, an autonomous vehicle should be capable of driving adaptively facing deterministic and stochastic events on the road. Therefore, control design for the safe, reliable and autonomous driving should consider vehicle model uncertainty as well uncertain external influences. The stochastic model predictive control scheme provides the most convenient scheme for the control of autonomous vehicles on moving horizons, where chance constraints are to be used to guarantee the reliable fulfillment of trajectory constraints and safety against static and random obstacles. To solve this kind of problems is known as chance constrained model predictive control. Thus, requires the solution of a chance constrained optimization on moving horizon. According to the literature, the major challenge for solving chance constrained optimization is to calculate the value of probability. As a result, approximation methods have been proposed for solving this task. In the present thesis, the chance constrained optimization for the autonomous vehicle is solved through approximation method, where the probability constraint is approximated by using a smooth parametric function. This methodology presents two approaches that allow the solution of chance constrained optimization problems in inner approximation and outer approximation. The aim of this approximation methods is to reformulate the chance constrained optimizations problems as a sequence of nonlinear programs. Finally, three case studies of autonomous vehicle for tracking and obstacle avoidance are presented in this work, in which three levels probability of reliability are considered for the optimal solution.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Control predictivoControl automáticoVehículoshttps://purl.org/pe-repo/ocde/ford#2.00.00Reliable autonomous vehicle control - a chance constrained stochastic MPC approachinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería MecatrónicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería Mecatrónica06470028713167https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81364https://tesis.pucp.edu.pe/bitstreams/13524522-d6ef-4d81-a193-56fbb05028b6/download78fbcb528ed107d89fa91de744ce17deMD52falseAnonymousREADORIGINALPOMA_LUIS_AUTONOMOUS_VEHICLE_CONTROL_STOCHASTIC_MPC.pdfPOMA_LUIS_AUTONOMOUS_VEHICLE_CONTROL_STOCHASTIC_MPC.pdfTexto completoapplication/pdf11017207https://tesis.pucp.edu.pe/bitstreams/f8c4ecc5-d316-4d47-849e-03aad06b40ba/downloadbf1ac2cc65885cd198f6a26bc35fc965MD51trueAnonymousREADTEXTPOMA_LUIS_AUTONOMOUS_VEHICLE_CONTROL_STOCHASTIC_MPC.pdf.txtPOMA_LUIS_AUTONOMOUS_VEHICLE_CONTROL_STOCHASTIC_MPC.pdf.txtExtracted texttext/plain144746https://tesis.pucp.edu.pe/bitstreams/2e8b6002-d2e2-4398-a26c-5edf45c40c3c/downloadd38e67cf22fa07d0ef537ad0d920170dMD53falseAnonymousREADTHUMBNAILPOMA_LUIS_AUTONOMOUS_VEHICLE_CONTROL_STOCHASTIC_MPC.pdf.jpgPOMA_LUIS_AUTONOMOUS_VEHICLE_CONTROL_STOCHASTIC_MPC.pdf.jpgIM Thumbnailimage/jpeg12866https://tesis.pucp.edu.pe/bitstreams/af125e87-0935-4d20-9f20-ccaaeda0653b/downloadf857d64dd9afb8dfe2fdec117b6f3f05MD54falseAnonymousREAD20.500.12404/8834oai:tesis.pucp.edu.pe:20.500.12404/88342025-07-18 12:59:19.547http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peQ29uIGxhIGF1dG9yaXphY2nDs24gZGUgZGVww7NzaXRvIGRlIG1pIHRlc2lzLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbywgdHJhbnNmb3JtYXIKKMO6bmljYW1lbnRlIG1lZGlhbnRlIHN1IHRyYWR1Y2Npw7NuIGEgb3Ryb3MgaWRpb21hcykgeSBwb25lciBhIGRpc3Bvc2ljacOzbiBkZWwgcMO6YmxpY28gbWkgdGVzaXMgKGluY2x1aWRvIGVsIHJlc3VtZW4pLCBlbiBmb3JtYXRvIGbDrXNpY28gbyBkaWdpdGFsLCBlbiBjdWFscXVpZXIgbWVkaW8sIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXJzZSwKYSB0cmF2w6lzIGRlIGxvcyBkaXZlcnNvcyBzZXJ2aWNpb3MgcHJvdmlzdG9zIHBvciBsYSBVbml2ZXJzaWRhZCwgY3JlYWRvcyBvIHBvciBjcmVhcnNlLCB0YWxlcyBjb21vIGVsIFJlcG9zaXRvcmlvIERpZ2l0YWwgZGUgVGVzaXMgUFVDUCwgQ29sZWNjacOzbiBkZSBUZXNpcywgZW50cmUgb3Ryb3MsIGVuIGVsIFBlcsO6IHkgZW4gZWwgZXh0cmFuamVybywKcG9yIGVsIHRpZW1wbyB5IHZlY2VzIHF1ZSBjb25zaWRlcmUgbmVjZXNhcmlhcywgeSBsaWJyZSBkZSByZW11bmVyYWNpb25lcy4KRW4gdmlydHVkIGRlIGRpY2hhIGxpY2VuY2lhLCBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogcG9kcsOhIHJlcHJvZHVjaXIgbWkgdGVzaXMgZW4gY3VhbHF1aWVyIHRpcG8gZGUgc29wb3J0ZSB5IGVuIG3DoXMgZGUgdW4gZWplbXBsYXIsIHNpbiBtb2RpZmljYXIgc3UgY29udGVuaWRvLCBzb2xvIGNvbgpwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4gCkRlY2xhcm8gcXVlIGxhIHRlc2lzIGVzIHVuYSBjcmVhY2nDs24gZGUgbWkgYXV0b3LDrWEgeSBleGNsdXNpdmEgdGl0dWxhcmlkYWQsIG8gY29hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sCmdhcmFudGl6byBxdWUgZGljaGEgdGVzaXMgbm8gaW5mcmluZ2UgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2VyYXMgcGVyc29uYXMuCkxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBjb25zaWduYXLDoSBlbCBub21icmUgZGVsL2xvcyBhdXRvci9lcyBkZSBsYSB0ZXNpcywgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgo=
score 13.472581
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).