Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
Descripción del Articulo
The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s c...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2018 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | inglés |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/12829 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/12829 |
| Nivel de acceso: | acceso abierto |
| Materia: | Geometría de Riemann Grupos de Lie Variedades (Matemáticas) https://purl.org/pe-repo/ocde/ford#1.01.00 |
| id |
PUCP_7e30e965c8a237eb50859866b2df3441 |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/12829 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| title |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| spellingShingle |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) Lope Vicente, Joe Moises Geometría de Riemann Grupos de Lie Variedades (Matemáticas) https://purl.org/pe-repo/ocde/ford#1.01.00 |
| title_short |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| title_full |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| title_fullStr |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| title_full_unstemmed |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| title_sort |
Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) |
| author |
Lope Vicente, Joe Moises |
| author_facet |
Lope Vicente, Joe Moises |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Cuadros Valle, Jaime |
| dc.contributor.author.fl_str_mv |
Lope Vicente, Joe Moises |
| dc.subject.es_ES.fl_str_mv |
Geometría de Riemann Grupos de Lie Variedades (Matemáticas) |
| topic |
Geometría de Riemann Grupos de Lie Variedades (Matemáticas) https://purl.org/pe-repo/ocde/ford#1.01.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
| description |
The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric. |
| publishDate |
2018 |
| dc.date.accessioned.es_ES.fl_str_mv |
2018-10-04T22:56:18Z |
| dc.date.available.es_ES.fl_str_mv |
2018-10-04T22:56:18Z |
| dc.date.created.es_ES.fl_str_mv |
2018 |
| dc.date.issued.fl_str_mv |
2018-10-04 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/12829 |
| url |
http://hdl.handle.net/20.500.12404/12829 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/105d5af8-c9ac-46a1-9034-65d882318cf6/download https://tesis.pucp.edu.pe/bitstreams/a9056304-b6d1-451e-8e3c-7c860d08aba2/download https://tesis.pucp.edu.pe/bitstreams/cd68a090-24e8-49e7-9a80-9bf8e9ea95bd/download https://tesis.pucp.edu.pe/bitstreams/55ca0227-fd06-4736-ac74-589a86b36834/download https://tesis.pucp.edu.pe/bitstreams/7c9d0bf8-2e8a-4dd4-a9bf-a2100f1f66e0/download |
| bitstream.checksum.fl_str_mv |
a6e2543416576c0ebe6bb7b59a02dd6b 571d7f90347e4384d4463993bf0da63c 8a4605be74aa9ea9d79846c1fba20a33 9838b213e10f9adecc12e97d30e3cce9 66bcd35d435cd98f3c86dd1c508ac07d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1839177083551481856 |
| spelling |
Cuadros Valle, JaimeLope Vicente, Joe Moises2018-10-04T22:56:18Z2018-10-04T22:56:18Z20182018-10-04http://hdl.handle.net/20.500.12404/12829The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Geometría de RiemannGrupos de LieVariedades (Matemáticas)https://purl.org/pe-repo/ocde/ford#1.01.00Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)info:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALLOPE_VICENTE_JOE_MOISES_CURVATURA.pdfLOPE_VICENTE_JOE_MOISES_CURVATURA.pdfTexto completoapplication/pdf81968665https://tesis.pucp.edu.pe/bitstreams/105d5af8-c9ac-46a1-9034-65d882318cf6/downloada6e2543416576c0ebe6bb7b59a02dd6bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://tesis.pucp.edu.pe/bitstreams/a9056304-b6d1-451e-8e3c-7c860d08aba2/download571d7f90347e4384d4463993bf0da63cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/cd68a090-24e8-49e7-9a80-9bf8e9ea95bd/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.jpgLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.jpgIM Thumbnailimage/jpeg14802https://tesis.pucp.edu.pe/bitstreams/55ca0227-fd06-4736-ac74-589a86b36834/download9838b213e10f9adecc12e97d30e3cce9MD54falseAnonymousREADTEXTLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.txtLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.txtExtracted texttext/plain187944https://tesis.pucp.edu.pe/bitstreams/7c9d0bf8-2e8a-4dd4-a9bf-a2100f1f66e0/download66bcd35d435cd98f3c86dd1c508ac07dMD55falseAnonymousREAD20.500.12404/12829oai:tesis.pucp.edu.pe:20.500.12404/128292025-07-18 13:00:37.594http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.425424 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).