Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)

Descripción del Articulo

The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s c...

Descripción completa

Detalles Bibliográficos
Autor: Lope Vicente, Joe Moises
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/12829
Enlace del recurso:http://hdl.handle.net/20.500.12404/12829
Nivel de acceso:acceso abierto
Materia:Geometría de Riemann
Grupos de Lie
Variedades (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.01.00
id PUCP_7e30e965c8a237eb50859866b2df3441
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/12829
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
title Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
spellingShingle Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
Lope Vicente, Joe Moises
Geometría de Riemann
Grupos de Lie
Variedades (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
title_full Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
title_fullStr Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
title_full_unstemmed Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
title_sort Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
author Lope Vicente, Joe Moises
author_facet Lope Vicente, Joe Moises
author_role author
dc.contributor.advisor.fl_str_mv Cuadros Valle, Jaime
dc.contributor.author.fl_str_mv Lope Vicente, Joe Moises
dc.subject.es_ES.fl_str_mv Geometría de Riemann
Grupos de Lie
Variedades (Matemáticas)
topic Geometría de Riemann
Grupos de Lie
Variedades (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric.
publishDate 2018
dc.date.accessioned.es_ES.fl_str_mv 2018-10-04T22:56:18Z
dc.date.available.es_ES.fl_str_mv 2018-10-04T22:56:18Z
dc.date.created.es_ES.fl_str_mv 2018
dc.date.issued.fl_str_mv 2018-10-04
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/12829
url http://hdl.handle.net/20.500.12404/12829
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/105d5af8-c9ac-46a1-9034-65d882318cf6/download
https://tesis.pucp.edu.pe/bitstreams/a9056304-b6d1-451e-8e3c-7c860d08aba2/download
https://tesis.pucp.edu.pe/bitstreams/cd68a090-24e8-49e7-9a80-9bf8e9ea95bd/download
https://tesis.pucp.edu.pe/bitstreams/55ca0227-fd06-4736-ac74-589a86b36834/download
https://tesis.pucp.edu.pe/bitstreams/7c9d0bf8-2e8a-4dd4-a9bf-a2100f1f66e0/download
bitstream.checksum.fl_str_mv a6e2543416576c0ebe6bb7b59a02dd6b
571d7f90347e4384d4463993bf0da63c
8a4605be74aa9ea9d79846c1fba20a33
9838b213e10f9adecc12e97d30e3cce9
66bcd35d435cd98f3c86dd1c508ac07d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177083551481856
spelling Cuadros Valle, JaimeLope Vicente, Joe Moises2018-10-04T22:56:18Z2018-10-04T22:56:18Z20182018-10-04http://hdl.handle.net/20.500.12404/12829The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Geometría de RiemannGrupos de LieVariedades (Matemáticas)https://purl.org/pe-repo/ocde/ford#1.01.00Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)info:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALLOPE_VICENTE_JOE_MOISES_CURVATURA.pdfLOPE_VICENTE_JOE_MOISES_CURVATURA.pdfTexto completoapplication/pdf81968665https://tesis.pucp.edu.pe/bitstreams/105d5af8-c9ac-46a1-9034-65d882318cf6/downloada6e2543416576c0ebe6bb7b59a02dd6bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://tesis.pucp.edu.pe/bitstreams/a9056304-b6d1-451e-8e3c-7c860d08aba2/download571d7f90347e4384d4463993bf0da63cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/cd68a090-24e8-49e7-9a80-9bf8e9ea95bd/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.jpgLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.jpgIM Thumbnailimage/jpeg14802https://tesis.pucp.edu.pe/bitstreams/55ca0227-fd06-4736-ac74-589a86b36834/download9838b213e10f9adecc12e97d30e3cce9MD54falseAnonymousREADTEXTLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.txtLOPE_VICENTE_JOE_MOISES_CURVATURA.pdf.txtExtracted texttext/plain187944https://tesis.pucp.edu.pe/bitstreams/7c9d0bf8-2e8a-4dd4-a9bf-a2100f1f66e0/download66bcd35d435cd98f3c86dd1c508ac07dMD55falseAnonymousREAD20.500.12404/12829oai:tesis.pucp.edu.pe:20.500.12404/128292025-07-18 13:00:37.594http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.425424
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).