Optimal control for polynomial systems using the sum of squares approach

Descripción del Articulo

The optimal control in linear systems is a widely known problem that leads to the solution of one or two equations of Ricatti. However, in non-linear systems is required to obtain the solution of the Hamilton-Jacobi-Bellman equation (HJB) or variations, which consist of quadratic first order and par...

Descripción completa

Detalles Bibliográficos
Autor: Vilcarima Sabroso, Carlos Alberto
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/12883
Enlace del recurso:http://hdl.handle.net/20.500.12404/12883
Nivel de acceso:acceso abierto
Materia:Algoritmos--Control óptimo
Sistemas lineales
https://purl.org/pe-repo/ocde/ford#2.02.03
id PUCP_539b7d1c7546ff5a31f8b8e95d41f72c
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/12883
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Optimal control for polynomial systems using the sum of squares approach
title Optimal control for polynomial systems using the sum of squares approach
spellingShingle Optimal control for polynomial systems using the sum of squares approach
Vilcarima Sabroso, Carlos Alberto
Algoritmos--Control óptimo
Sistemas lineales
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Optimal control for polynomial systems using the sum of squares approach
title_full Optimal control for polynomial systems using the sum of squares approach
title_fullStr Optimal control for polynomial systems using the sum of squares approach
title_full_unstemmed Optimal control for polynomial systems using the sum of squares approach
title_sort Optimal control for polynomial systems using the sum of squares approach
author Vilcarima Sabroso, Carlos Alberto
author_facet Vilcarima Sabroso, Carlos Alberto
author_role author
dc.contributor.advisor.fl_str_mv Reger, Johann
dc.contributor.author.fl_str_mv Vilcarima Sabroso, Carlos Alberto
dc.subject.es_ES.fl_str_mv Algoritmos--Control óptimo
Sistemas lineales
topic Algoritmos--Control óptimo
Sistemas lineales
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The optimal control in linear systems is a widely known problem that leads to the solution of one or two equations of Ricatti. However, in non-linear systems is required to obtain the solution of the Hamilton-Jacobi-Bellman equation (HJB) or variations, which consist of quadratic first order and partial differential equations, that are really difficult to solve. On the other hand, many non-linear dynamical systems can be represented as polynomial functions, where thanks to abstract algebra there are several techniques that facilitate the analysis and work with polynomials. This is where the sum-of-squares approach can be used as a sufficient condition to determine the positivity of a polynomial, a tool that is used in the search for suboptimal solutions of the HJB equation for the synthesis of a controller. The main objective of this thesis is the analysis, improvement and/or extension of an optimal control algorithm for polynomial systems by using the sum of squares approach (SOS). To do this, I will explain the theory and advantages of the sum-of-squares approach and then present a controller, which will serve as the basis for our proposal. Next, improvements will be added in its performance criteria and the scope of the controller will be extended, so that rational systems can be controlled. Finally an alternative will be presented for its implementation, when it is not possible to measure or estimate the state-space variables of the system. Additionally, some examples that validated the results are also presented.
publishDate 2018
dc.date.accessioned.es_ES.fl_str_mv 2018-10-16T22:48:56Z
dc.date.available.es_ES.fl_str_mv 2018-10-16T22:48:56Z
dc.date.created.es_ES.fl_str_mv 2018
dc.date.issued.fl_str_mv 2018-10-16
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/12883
url http://hdl.handle.net/20.500.12404/12883
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/216cdf54-1511-4481-bbe5-7d1a0cb08aaa/download
https://tesis.pucp.edu.pe/bitstreams/0fb4316f-1e99-4f62-8ef7-b57fe5adc3f6/download
https://tesis.pucp.edu.pe/bitstreams/abe6a4f4-dbde-4b1a-9b56-d2aa8b33dc0f/download
https://tesis.pucp.edu.pe/bitstreams/4b04f9f2-8534-4466-ac98-e10f549087f7/download
https://tesis.pucp.edu.pe/bitstreams/6f1e2938-a103-4937-a1a4-a3eb849f0305/download
bitstream.checksum.fl_str_mv a15ead65bca2f63cb41bcb1d08c940ca
cecad8b9db9baa545d9832dd94d55f6b
8a4605be74aa9ea9d79846c1fba20a33
79d0e261a636a474cf6c62e0883a668c
cf1997ac2058ac87558086d04fdd0257
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176673329676288
spelling Reger, JohannVilcarima Sabroso, Carlos Alberto2018-10-16T22:48:56Z2018-10-16T22:48:56Z20182018-10-16http://hdl.handle.net/20.500.12404/12883The optimal control in linear systems is a widely known problem that leads to the solution of one or two equations of Ricatti. However, in non-linear systems is required to obtain the solution of the Hamilton-Jacobi-Bellman equation (HJB) or variations, which consist of quadratic first order and partial differential equations, that are really difficult to solve. On the other hand, many non-linear dynamical systems can be represented as polynomial functions, where thanks to abstract algebra there are several techniques that facilitate the analysis and work with polynomials. This is where the sum-of-squares approach can be used as a sufficient condition to determine the positivity of a polynomial, a tool that is used in the search for suboptimal solutions of the HJB equation for the synthesis of a controller. The main objective of this thesis is the analysis, improvement and/or extension of an optimal control algorithm for polynomial systems by using the sum of squares approach (SOS). To do this, I will explain the theory and advantages of the sum-of-squares approach and then present a controller, which will serve as the basis for our proposal. Next, improvements will be added in its performance criteria and the scope of the controller will be extended, so that rational systems can be controlled. Finally an alternative will be presented for its implementation, when it is not possible to measure or estimate the state-space variables of the system. Additionally, some examples that validated the results are also presented.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Algoritmos--Control óptimoSistemas linealeshttps://purl.org/pe-repo/ocde/ford#2.02.03Optimal control for polynomial systems using the sum of squares approachinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización712037https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALVILCARIMA_SABROSO_CARLOS_ALBERTO.pdfVILCARIMA_SABROSO_CARLOS_ALBERTO.pdfTexto completoapplication/pdf1331793https://tesis.pucp.edu.pe/bitstreams/216cdf54-1511-4481-bbe5-7d1a0cb08aaa/downloada15ead65bca2f63cb41bcb1d08c940caMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81036https://tesis.pucp.edu.pe/bitstreams/0fb4316f-1e99-4f62-8ef7-b57fe5adc3f6/downloadcecad8b9db9baa545d9832dd94d55f6bMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/abe6a4f4-dbde-4b1a-9b56-d2aa8b33dc0f/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTVILCARIMA_SABROSO_CARLOS_ALBERTO.pdf.txtVILCARIMA_SABROSO_CARLOS_ALBERTO.pdf.txtExtracted texttext/plain76952https://tesis.pucp.edu.pe/bitstreams/4b04f9f2-8534-4466-ac98-e10f549087f7/download79d0e261a636a474cf6c62e0883a668cMD54falseAnonymousREADTHUMBNAILVILCARIMA_SABROSO_CARLOS_ALBERTO.pdf.jpgVILCARIMA_SABROSO_CARLOS_ALBERTO.pdf.jpgIM Thumbnailimage/jpeg13991https://tesis.pucp.edu.pe/bitstreams/6f1e2938-a103-4937-a1a4-a3eb849f0305/downloadcf1997ac2058ac87558086d04fdd0257MD55falseAnonymousREAD20.500.12404/12883oai:tesis.pucp.edu.pe:20.500.12404/128832025-07-18 12:48:57.929http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.364888
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).