Robust estimation of vertical wheel forces via modulation-based sensor fusion

Descripción del Articulo

Since its introduction by Shinbrot, numerous variations of parameter identification based on the Modulating Function Technique (MFT) have been developed. Recently researches have achieved to estimate also states through this method. In this thesis, the MFT is utilized for the estimation, of both par...

Descripción completa

Detalles Bibliográficos
Autor: Segura Rojas, Juan de Dios
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/15298
Enlace del recurso:http://hdl.handle.net/20.500.12404/15298
Nivel de acceso:acceso abierto
Materia:Modulación de frecuencia
Sensores
Automóviles--Dinámica
https://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:Since its introduction by Shinbrot, numerous variations of parameter identification based on the Modulating Function Technique (MFT) have been developed. Recently researches have achieved to estimate also states through this method. In this thesis, the MFT is utilized for the estimation, of both parameters and states, that lead to observe the behaviour of the vertical suspension forces on a vehicle over time. In order to deal with the frequency disturbances present by perturbations as measurement noise and vibrations, the Fourier Modulating Function (FMF) as a kernel is proposed. Furthermore, this method is implemented with the concept of sensor fusion. The estimation that results after the implementation of an adaptive observer during the present work is going to show the robustness of the studied technique.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).