Estudio local y global de un sistema tipo Korteweg-De Vries-Burger

Descripción del Articulo

Las ecuaciones de Boussinesq son un tipo de ecuaciones derivadas de las ecuaciones de Euler y que modelan la propagación sensiblemente bidimensional de ondas largas de gravedad y de pequeña amplitud sobre la super cie de un canal. Un modelo de este tipo en un canal de fondo plano está dado por el si...

Descripción completa

Detalles Bibliográficos
Autor: Rueda Castillo, Dandy
Formato: tesis de maestría
Fecha de Publicación:2012
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/1709
Enlace del recurso:http://hdl.handle.net/20.500.12404/1709
Nivel de acceso:acceso abierto
Materia:Ecuaciones de Korteweg-de Vries
https://purl.org/pe-repo/ocde/ford#1.01.00
id PUCP_30598a498d9e9294bce90a1d85984ef3
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/1709
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
title Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
spellingShingle Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
Rueda Castillo, Dandy
Ecuaciones de Korteweg-de Vries
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
title_full Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
title_fullStr Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
title_full_unstemmed Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
title_sort Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
author Rueda Castillo, Dandy
author_facet Rueda Castillo, Dandy
author_role author
dc.contributor.advisor.fl_str_mv Montealegre Scott, Juan
dc.contributor.author.fl_str_mv Rueda Castillo, Dandy
dc.subject.es_ES.fl_str_mv Ecuaciones de Korteweg-de Vries
topic Ecuaciones de Korteweg-de Vries
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description Las ecuaciones de Boussinesq son un tipo de ecuaciones derivadas de las ecuaciones de Euler y que modelan la propagación sensiblemente bidimensional de ondas largas de gravedad y de pequeña amplitud sobre la super cie de un canal. Un modelo de este tipo en un canal de fondo plano está dado por el sistema (P1)donde las variables adimensionales y w representan respectivamente, la de flección de la super ficie libre del líquido respecto a su posición de reposo y la velocidad horizontal del fluido a una profundidad de raíz cuadrada 2/3h; donde h es la profundidad del fluido en reposo. Dicho modelo es desde luego un sistema de ecuaciones diferenciales de Korteweg-de Vries acopladas a través de los efectos dispersivos y los términos no lineales. Por otro lado, el sistema (P1) al estar referido a un fl uido incompresible no viscoso no recoge los efectos de la viscosidad ; sin embargo al ser desacoplado podemos introducir tales efectos, resultando un sistema del tipo Korteweg-de Vries - Burger dado por (P2) En este trabajo se estudia el PVI asociado a (P2) en los espacios Hs estableciendo su buena formulación local para s > 3/2 y buena formulación global para s >= 2; en este último caso se muestra adicionalmente que la solución global decae asíntoticamente en el tiempo. Finalmente, se muestra que el PVI asociado a (P1) está bien formulado localmente como consecuencia de la buena formulación local de (P2).
publishDate 2012
dc.date.created.es_ES.fl_str_mv 2012
dc.date.accessioned.es_ES.fl_str_mv 2013-01-30T22:00:31Z
dc.date.available.es_ES.fl_str_mv 2013-01-30T22:00:31Z
dc.date.issued.fl_str_mv 2013-01-30
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/1709
url http://hdl.handle.net/20.500.12404/1709
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/e181926d-979a-4596-9f97-9916262b5a8c/download
https://tesis.pucp.edu.pe/bitstreams/6a687b8c-9958-4d27-9f33-e4bca2e4d99d/download
https://tesis.pucp.edu.pe/bitstreams/2c2398a8-3cb5-4e09-b7ae-b55e20edc7fc/download
https://tesis.pucp.edu.pe/bitstreams/07725728-2df1-4804-97b4-3a0a8ca18399/download
bitstream.checksum.fl_str_mv f778587a6c153d701eb57e74beadc842
8a4605be74aa9ea9d79846c1fba20a33
eccae615b6508e014226c7737610e77b
e70463fbe725d8dab626f80cf17f82e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176764002140160
spelling Montealegre Scott, JuanRueda Castillo, Dandy2013-01-30T22:00:31Z2013-01-30T22:00:31Z20122013-01-30http://hdl.handle.net/20.500.12404/1709Las ecuaciones de Boussinesq son un tipo de ecuaciones derivadas de las ecuaciones de Euler y que modelan la propagación sensiblemente bidimensional de ondas largas de gravedad y de pequeña amplitud sobre la super cie de un canal. Un modelo de este tipo en un canal de fondo plano está dado por el sistema (P1)donde las variables adimensionales y w representan respectivamente, la de flección de la super ficie libre del líquido respecto a su posición de reposo y la velocidad horizontal del fluido a una profundidad de raíz cuadrada 2/3h; donde h es la profundidad del fluido en reposo. Dicho modelo es desde luego un sistema de ecuaciones diferenciales de Korteweg-de Vries acopladas a través de los efectos dispersivos y los términos no lineales. Por otro lado, el sistema (P1) al estar referido a un fl uido incompresible no viscoso no recoge los efectos de la viscosidad ; sin embargo al ser desacoplado podemos introducir tales efectos, resultando un sistema del tipo Korteweg-de Vries - Burger dado por (P2) En este trabajo se estudia el PVI asociado a (P2) en los espacios Hs estableciendo su buena formulación local para s > 3/2 y buena formulación global para s >= 2; en este último caso se muestra adicionalmente que la solución global decae asíntoticamente en el tiempo. Finalmente, se muestra que el PVI asociado a (P1) está bien formulado localmente como consecuencia de la buena formulación local de (P2).TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Ecuaciones de Korteweg-de Vrieshttps://purl.org/pe-repo/ocde/ford#1.01.00Estudio local y global de un sistema tipo Korteweg-De Vries-Burgerinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALRUEDA_CASTILLO_DANDY_ESTUDIO_LOCAL_KORTEWEG_DE_VRIES_BUERGER.pdfRUEDA_CASTILLO_DANDY_ESTUDIO_LOCAL_KORTEWEG_DE_VRIES_BUERGER.pdfapplication/pdf1148646https://tesis.pucp.edu.pe/bitstreams/e181926d-979a-4596-9f97-9916262b5a8c/downloadf778587a6c153d701eb57e74beadc842MD53trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/6a687b8c-9958-4d27-9f33-e4bca2e4d99d/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTRUEDA_CASTILLO_DANDY_ESTUDIO_LOCAL_KORTEWEG_DE_VRIES_BUERGER.pdf.txtRUEDA_CASTILLO_DANDY_ESTUDIO_LOCAL_KORTEWEG_DE_VRIES_BUERGER.pdf.txtExtracted texttext/plain125941https://tesis.pucp.edu.pe/bitstreams/2c2398a8-3cb5-4e09-b7ae-b55e20edc7fc/downloadeccae615b6508e014226c7737610e77bMD56falseAnonymousREADTHUMBNAILRUEDA_CASTILLO_DANDY_ESTUDIO_LOCAL_KORTEWEG_DE_VRIES_BUERGER.pdf.jpgRUEDA_CASTILLO_DANDY_ESTUDIO_LOCAL_KORTEWEG_DE_VRIES_BUERGER.pdf.jpgIM Thumbnailimage/jpeg36343https://tesis.pucp.edu.pe/bitstreams/07725728-2df1-4804-97b4-3a0a8ca18399/downloade70463fbe725d8dab626f80cf17f82e4MD57falseAnonymousREAD20.500.12404/1709oai:tesis.pucp.edu.pe:20.500.12404/17092025-07-18 12:51:16.73http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.480191
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).