Object detection in videos using principal component pursuit and convolutional neural networks

Descripción del Articulo

Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) f...

Descripción completa

Detalles Bibliográficos
Autor: Tejada Gamero, Enrique David
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/11982
Enlace del recurso:http://hdl.handle.net/20.500.12404/11982
Nivel de acceso:acceso abierto
Materia:Reconocimiento de imágenes
Redes neuronales--Aplicaciones
Visión por computadoras
https://purl.org/pe-repo/ocde/ford#2.02.05
id PUCP_0e381216751ceabdd610fdd23470f577
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/11982
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Object detection in videos using principal component pursuit and convolutional neural networks
title Object detection in videos using principal component pursuit and convolutional neural networks
spellingShingle Object detection in videos using principal component pursuit and convolutional neural networks
Tejada Gamero, Enrique David
Reconocimiento de imágenes
Redes neuronales--Aplicaciones
Visión por computadoras
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Object detection in videos using principal component pursuit and convolutional neural networks
title_full Object detection in videos using principal component pursuit and convolutional neural networks
title_fullStr Object detection in videos using principal component pursuit and convolutional neural networks
title_full_unstemmed Object detection in videos using principal component pursuit and convolutional neural networks
title_sort Object detection in videos using principal component pursuit and convolutional neural networks
author Tejada Gamero, Enrique David
author_facet Tejada Gamero, Enrique David
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paul Antonio
dc.contributor.author.fl_str_mv Tejada Gamero, Enrique David
dc.subject.es_ES.fl_str_mv Reconocimiento de imágenes
Redes neuronales--Aplicaciones
Visión por computadoras
topic Reconocimiento de imágenes
Redes neuronales--Aplicaciones
Visión por computadoras
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects. We hypothesize that such pre-processing step, which segments the moving objects from the background, would reduce the amount of regions to be analyzed in a given frame and thus (i) improve the classification time and (ii) reduce the error in classification for the dynamic objects present in the video. In particular, we use a fully incremental RPCA / PCP algorithm that is suitable for real-time or on-line processing. Furthermore, we present extensive computational results that were carried out in three different platforms: A high-end server with a Tesla K40m GPU, a desktop with a Tesla K10m GPU and the embedded system Jetson TK1. Our classification results attain competitive or superior performance in terms of Fmeasure, achieving an improvement ranging from 3.7% to 97.2%, with a mean improvement of 22% when the sparse image was used to detect and classify the object with the neural network, while at the same time, reducing the classification time in all architectures by a factor raging between 2% and 25%.
publishDate 2018
dc.date.accessioned.es_ES.fl_str_mv 2018-05-03T16:08:58Z
dc.date.available.es_ES.fl_str_mv 2018-05-03T16:08:58Z
dc.date.created.es_ES.fl_str_mv 2018
dc.date.EmbargoEnd.none.fl_str_mv 2019-01-01
dc.date.issued.fl_str_mv 2018-05-03
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/11982
url http://hdl.handle.net/20.500.12404/11982
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/83bf5938-136b-4fdf-8f4e-a81a9e93336b/download
https://tesis.pucp.edu.pe/bitstreams/c3eaface-986c-4a85-9b3d-2a68dc96111d/download
https://tesis.pucp.edu.pe/bitstreams/2270a21a-2a1d-4fb9-b255-d37a3a615ab6/download
https://tesis.pucp.edu.pe/bitstreams/9e1ca0b0-5a5a-4e57-810a-3f7e65f8b733/download
https://tesis.pucp.edu.pe/bitstreams/6b1d11c0-3f9f-4e10-a80f-2eaa2103a9de/download
bitstream.checksum.fl_str_mv 27aebf468cd68dc7eda8cba25fc5f3a8
17281701433fa9b4afa2d3e6286c67c7
8a4605be74aa9ea9d79846c1fba20a33
bb1e5659bcadb7189bcea207a261dccb
6aef286f0c9002a52edfaa0a5c22a7bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176268391645184
spelling Rodríguez Valderrama, Paul AntonioTejada Gamero, Enrique David2018-05-03T16:08:58Z2018-05-03T16:08:58Z20182018-05-032019-01-01http://hdl.handle.net/20.500.12404/11982Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects. We hypothesize that such pre-processing step, which segments the moving objects from the background, would reduce the amount of regions to be analyzed in a given frame and thus (i) improve the classification time and (ii) reduce the error in classification for the dynamic objects present in the video. In particular, we use a fully incremental RPCA / PCP algorithm that is suitable for real-time or on-line processing. Furthermore, we present extensive computational results that were carried out in three different platforms: A high-end server with a Tesla K40m GPU, a desktop with a Tesla K10m GPU and the embedded system Jetson TK1. Our classification results attain competitive or superior performance in terms of Fmeasure, achieving an improvement ranging from 3.7% to 97.2%, with a mean improvement of 22% when the sparse image was used to detect and classify the object with the neural network, while at the same time, reducing the classification time in all architectures by a factor raging between 2% and 25%.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Reconocimiento de imágenesRedes neuronales--AplicacionesVisión por computadorashttps://purl.org/pe-repo/ocde/ford#2.02.05Object detection in videos using principal component pursuit and convolutional neural networksinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://tesis.pucp.edu.pe/bitstreams/83bf5938-136b-4fdf-8f4e-a81a9e93336b/download27aebf468cd68dc7eda8cba25fc5f3a8MD52falseAnonymousREADORIGINALTEJADA_GAMERO_ENRIQUE_OBJECT_DETECTION_VIDEOS.pdfTEJADA_GAMERO_ENRIQUE_OBJECT_DETECTION_VIDEOS.pdftexto completoapplication/pdf3445409https://tesis.pucp.edu.pe/bitstreams/c3eaface-986c-4a85-9b3d-2a68dc96111d/download17281701433fa9b4afa2d3e6286c67c7MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/2270a21a-2a1d-4fb9-b255-d37a3a615ab6/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILTEJADA_GAMERO_ENRIQUE_OBJECT_DETECTION_VIDEOS.pdf.jpgTEJADA_GAMERO_ENRIQUE_OBJECT_DETECTION_VIDEOS.pdf.jpgIM Thumbnailimage/jpeg11858https://tesis.pucp.edu.pe/bitstreams/9e1ca0b0-5a5a-4e57-810a-3f7e65f8b733/downloadbb1e5659bcadb7189bcea207a261dccbMD54falseAnonymousREADTEXTTEJADA_GAMERO_ENRIQUE_OBJECT_DETECTION_VIDEOS.pdf.txtTEJADA_GAMERO_ENRIQUE_OBJECT_DETECTION_VIDEOS.pdf.txtExtracted texttext/plain59915https://tesis.pucp.edu.pe/bitstreams/6b1d11c0-3f9f-4e10-a80f-2eaa2103a9de/download6aef286f0c9002a52edfaa0a5c22a7bbMD55falseAnonymousREAD20.500.12404/11982oai:tesis.pucp.edu.pe:20.500.12404/119822025-07-18 12:56:25.927http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.377223
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).