Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
Descripción del Articulo
Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to b...
Autores: | , , , , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2896 |
Enlace del recurso: | http://hdl.handle.net/20.500.12955/2896 http://doi.org/10.17268/agroind.sci.2025.03.05 |
Nivel de acceso: | acceso abierto |
Materia: | Oryza sativa Teledetección Imágenes multispectrales Aprendizaje automático Mejora genética Remote sensing Multispectral imaging Machine learning Genetic improvement. https://purl.org/pe-repo/ocde/ford#4.01.01 Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture |
id |
INIA_e688343ba5bc231f96d551c2b6f7b7d9 |
---|---|
oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2896 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.none.fl_str_mv |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
dc.title.alternative.none.fl_str_mv |
Fenotipado del arroz mediante vehículos aéreos no tripulados: Análisis de características morfológicas y rendimiento |
title |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
spellingShingle |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield Goigochea Pinchi, Diego Oryza sativa Teledetección Imágenes multispectrales Aprendizaje automático Mejora genética Remote sensing Multispectral imaging Machine learning Genetic improvement. https://purl.org/pe-repo/ocde/ford#4.01.01 Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture |
title_short |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
title_full |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
title_fullStr |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
title_full_unstemmed |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
title_sort |
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield |
author |
Goigochea Pinchi, Diego |
author_facet |
Goigochea Pinchi, Diego Vega Herrera, Sergio Sebastian Torres Chavez, Edson Esmith Archentti Reategui, Fernando Barrera Torres, Ciceron Dominguez Yap, Percy Luis Ysuiza Perez, Alfredo Perez Tello, Monica Rios Rios, Raúl Santillan Gonzáles, Manuel Dante Ganoza Roncal, Jorge Juan Ruiz Reyes, Jose Guillermo Agurto Piñarreta, Alex Ivan |
author_role |
author |
author2 |
Vega Herrera, Sergio Sebastian Torres Chavez, Edson Esmith Archentti Reategui, Fernando Barrera Torres, Ciceron Dominguez Yap, Percy Luis Ysuiza Perez, Alfredo Perez Tello, Monica Rios Rios, Raúl Santillan Gonzáles, Manuel Dante Ganoza Roncal, Jorge Juan Ruiz Reyes, Jose Guillermo Agurto Piñarreta, Alex Ivan |
author2_role |
author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Goigochea Pinchi, Diego Vega Herrera, Sergio Sebastian Torres Chavez, Edson Esmith Archentti Reategui, Fernando Barrera Torres, Ciceron Dominguez Yap, Percy Luis Ysuiza Perez, Alfredo Perez Tello, Monica Rios Rios, Raúl Santillan Gonzáles, Manuel Dante Ganoza Roncal, Jorge Juan Ruiz Reyes, Jose Guillermo Agurto Piñarreta, Alex Ivan |
dc.subject.none.fl_str_mv |
Oryza sativa Teledetección Imágenes multispectrales Aprendizaje automático Mejora genética Remote sensing Multispectral imaging Machine learning Genetic improvement. |
topic |
Oryza sativa Teledetección Imágenes multispectrales Aprendizaje automático Mejora genética Remote sensing Multispectral imaging Machine learning Genetic improvement. https://purl.org/pe-repo/ocde/ford#4.01.01 Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.01 |
dc.subject.agrovoc.none.fl_str_mv |
Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture |
description |
Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-10-13T20:17:11Z |
dc.date.available.none.fl_str_mv |
2025-10-13T20:17:11Z |
dc.date.issued.fl_str_mv |
2025-09-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
2226-2989 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2896 |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.17268/agroind.sci.2025.03.05 |
identifier_str_mv |
2226-2989 |
url |
http://hdl.handle.net/20.500.12955/2896 http://doi.org/10.17268/agroind.sci.2025.03.05 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2226-2989 |
dc.relation.ispartofseries.none.fl_str_mv |
Universidad Nacional de Trujillo - Escuela de Ingeniería Agroindustrial |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/nc/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/50c63871-534d-4ef0-b785-40971115cf6e/download https://repositorio.inia.gob.pe/bitstreams/2023ed44-d04b-4ae1-91a5-d606ede83c65/download |
bitstream.checksum.fl_str_mv |
61c5198a3a5d1e964cd212f9487333b0 a1dff3722e05e29dac20fa1a97a12ccf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1846015143259930624 |
spelling |
Goigochea Pinchi, DiegoVega Herrera, Sergio SebastianTorres Chavez, Edson EsmithArchentti Reategui, FernandoBarrera Torres, CiceronDominguez Yap, Percy LuisYsuiza Perez, AlfredoPerez Tello, MonicaRios Rios, RaúlSantillan Gonzáles, Manuel DanteGanoza Roncal, Jorge JuanRuiz Reyes, Jose GuillermoAgurto Piñarreta, Alex Ivan2025-10-13T20:17:11Z2025-10-13T20:17:11Z2025-09-262226-2989http://hdl.handle.net/20.500.12955/2896http://doi.org/10.17268/agroind.sci.2025.03.05Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria.application/pdfengurn:issn:2226-2989Universidad Nacional de Trujillo - Escuela de Ingeniería Agroindustrialinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/nc/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAOryza sativaTeledetecciónImágenes multispectralesAprendizaje automáticoMejora genéticaRemote sensingMultispectral imagingMachine learningGenetic improvement.https://purl.org/pe-repo/ocde/ford#4.01.01Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agricultureRice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yieldFenotipado del arroz mediante vehículos aéreos no tripulados: Análisis de características morfológicas y rendimientoinfo:eu-repo/semantics/articlePEORIGINALGoigochea_et-al_2025_rice_phenotyping.pdfGoigochea_et-al_2025_rice_phenotyping.pdfapplication/pdf922527https://repositorio.inia.gob.pe/bitstreams/50c63871-534d-4ef0-b785-40971115cf6e/download61c5198a3a5d1e964cd212f9487333b0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/2023ed44-d04b-4ae1-91a5-d606ede83c65/downloada1dff3722e05e29dac20fa1a97a12ccfMD5220.500.12955/2896oai:repositorio.inia.gob.pe:20.500.12955/28962025-10-13 15:17:11.963https://creativecommons.org/licenses/by/nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
score |
13.887938 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).