Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield

Descripción del Articulo

Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to b...

Descripción completa

Detalles Bibliográficos
Autores: Goigochea Pinchi, Diego, Vega Herrera, Sergio Sebastian, Torres Chavez, Edson Esmith, Archentti Reategui, Fernando, Barrera Torres, Ciceron, Dominguez Yap, Percy Luis, Ysuiza Perez, Alfredo, Perez Tello, Monica, Rios Rios, Raúl, Santillan Gonzáles, Manuel Dante, Ganoza Roncal, Jorge Juan, Ruiz Reyes, Jose Guillermo, Agurto Piñarreta, Alex Ivan
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2896
Enlace del recurso:http://hdl.handle.net/20.500.12955/2896
http://doi.org/10.17268/agroind.sci.2025.03.05
Nivel de acceso:acceso abierto
Materia:Oryza sativa
Teledetección
Imágenes multispectrales
Aprendizaje automático
Mejora genética
Remote sensing
Multispectral imaging
Machine learning
Genetic improvement.
https://purl.org/pe-repo/ocde/ford#4.01.01
Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
id INIA_e688343ba5bc231f96d551c2b6f7b7d9
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2896
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
dc.title.alternative.none.fl_str_mv Fenotipado del arroz mediante vehículos aéreos no tripulados: Análisis de características morfológicas y rendimiento
title Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
spellingShingle Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
Goigochea Pinchi, Diego
Oryza sativa
Teledetección
Imágenes multispectrales
Aprendizaje automático
Mejora genética
Remote sensing
Multispectral imaging
Machine learning
Genetic improvement.
https://purl.org/pe-repo/ocde/ford#4.01.01
Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
title_short Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_full Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_fullStr Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_full_unstemmed Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_sort Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
author Goigochea Pinchi, Diego
author_facet Goigochea Pinchi, Diego
Vega Herrera, Sergio Sebastian
Torres Chavez, Edson Esmith
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ysuiza Perez, Alfredo
Perez Tello, Monica
Rios Rios, Raúl
Santillan Gonzáles, Manuel Dante
Ganoza Roncal, Jorge Juan
Ruiz Reyes, Jose Guillermo
Agurto Piñarreta, Alex Ivan
author_role author
author2 Vega Herrera, Sergio Sebastian
Torres Chavez, Edson Esmith
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ysuiza Perez, Alfredo
Perez Tello, Monica
Rios Rios, Raúl
Santillan Gonzáles, Manuel Dante
Ganoza Roncal, Jorge Juan
Ruiz Reyes, Jose Guillermo
Agurto Piñarreta, Alex Ivan
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Goigochea Pinchi, Diego
Vega Herrera, Sergio Sebastian
Torres Chavez, Edson Esmith
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ysuiza Perez, Alfredo
Perez Tello, Monica
Rios Rios, Raúl
Santillan Gonzáles, Manuel Dante
Ganoza Roncal, Jorge Juan
Ruiz Reyes, Jose Guillermo
Agurto Piñarreta, Alex Ivan
dc.subject.none.fl_str_mv Oryza sativa
Teledetección
Imágenes multispectrales
Aprendizaje automático
Mejora genética
Remote sensing
Multispectral imaging
Machine learning
Genetic improvement.
topic Oryza sativa
Teledetección
Imágenes multispectrales
Aprendizaje automático
Mejora genética
Remote sensing
Multispectral imaging
Machine learning
Genetic improvement.
https://purl.org/pe-repo/ocde/ford#4.01.01
Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.agrovoc.none.fl_str_mv Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
description Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-13T20:17:11Z
dc.date.available.none.fl_str_mv 2025-10-13T20:17:11Z
dc.date.issued.fl_str_mv 2025-09-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 2226-2989
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2896
dc.identifier.doi.none.fl_str_mv http://doi.org/10.17268/agroind.sci.2025.03.05
identifier_str_mv 2226-2989
url http://hdl.handle.net/20.500.12955/2896
http://doi.org/10.17268/agroind.sci.2025.03.05
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2226-2989
dc.relation.ispartofseries.none.fl_str_mv Universidad Nacional de Trujillo - Escuela de Ingeniería Agroindustrial
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/50c63871-534d-4ef0-b785-40971115cf6e/download
https://repositorio.inia.gob.pe/bitstreams/2023ed44-d04b-4ae1-91a5-d606ede83c65/download
bitstream.checksum.fl_str_mv 61c5198a3a5d1e964cd212f9487333b0
a1dff3722e05e29dac20fa1a97a12ccf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1846015143259930624
spelling Goigochea Pinchi, DiegoVega Herrera, Sergio SebastianTorres Chavez, Edson EsmithArchentti Reategui, FernandoBarrera Torres, CiceronDominguez Yap, Percy LuisYsuiza Perez, AlfredoPerez Tello, MonicaRios Rios, RaúlSantillan Gonzáles, Manuel DanteGanoza Roncal, Jorge JuanRuiz Reyes, Jose GuillermoAgurto Piñarreta, Alex Ivan2025-10-13T20:17:11Z2025-10-13T20:17:11Z2025-09-262226-2989http://hdl.handle.net/20.500.12955/2896http://doi.org/10.17268/agroind.sci.2025.03.05Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria.application/pdfengurn:issn:2226-2989Universidad Nacional de Trujillo - Escuela de Ingeniería Agroindustrialinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/nc/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAOryza sativaTeledetecciónImágenes multispectralesAprendizaje automáticoMejora genéticaRemote sensingMultispectral imagingMachine learningGenetic improvement.https://purl.org/pe-repo/ocde/ford#4.01.01Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agricultureRice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yieldFenotipado del arroz mediante vehículos aéreos no tripulados: Análisis de características morfológicas y rendimientoinfo:eu-repo/semantics/articlePEORIGINALGoigochea_et-al_2025_rice_phenotyping.pdfGoigochea_et-al_2025_rice_phenotyping.pdfapplication/pdf922527https://repositorio.inia.gob.pe/bitstreams/50c63871-534d-4ef0-b785-40971115cf6e/download61c5198a3a5d1e964cd212f9487333b0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/2023ed44-d04b-4ae1-91a5-d606ede83c65/downloada1dff3722e05e29dac20fa1a97a12ccfMD5220.500.12955/2896oai:repositorio.inia.gob.pe:20.500.12955/28962025-10-13 15:17:11.963https://creativecommons.org/licenses/by/nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.887938
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).