From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach

Descripción del Articulo

Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotop...

Descripción completa

Detalles Bibliográficos
Autores: Carbajal, Mariella, Ramirez, David A., Turin Canchaya, Cecilia Claudia, Schaeffer, Sean M., Konkel, Julie, Ninanya, Johan, Rinza, Javier, De Mendiburu, Felipe, Zorogastua, Percy, Villaorduña, Liliana, Quiroz, Roberto
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2576
Enlace del recurso:https://hdl.handle.net/20.500.12955/2576
https://doi.org/10.1007/s10021-024-00928-7
Nivel de acceso:acceso abierto
Materia:Artificial neural networks
Bofedales
13C isotope composition
Extreme gradient boosting
Grasslands
Random forest
Refractory C fraction
Support vector machine
https://purl.org/pe-repo/ocde/ford#4.01.04
Redes de neuronas
Fishing nets
Tierra húmeda
Wetlands
Isótopo
Isotopes
Gradiente de temperatura
Temperature gradients
Pradera
Machine learning
Aprendizaje automático
id INIA_9b7db389c9afc61c64d06407812567a2
oai_identifier_str oai:null:20.500.12955/2576
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
title From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
spellingShingle From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
Carbajal, Mariella
Artificial neural networks
Bofedales
13C isotope composition
Extreme gradient boosting
Grasslands
Random forest
Refractory C fraction
Support vector machine
https://purl.org/pe-repo/ocde/ford#4.01.04
Redes de neuronas
Fishing nets
Tierra húmeda
Wetlands
Isótopo
Isotopes
Gradiente de temperatura
Temperature gradients
Grasslands
Pradera
Machine learning
Aprendizaje automático
title_short From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
title_full From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
title_fullStr From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
title_full_unstemmed From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
title_sort From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
author Carbajal, Mariella
author_facet Carbajal, Mariella
Ramirez, David A.
Turin Canchaya, Cecilia Claudia
Schaeffer, Sean M.
Konkel, Julie
Ninanya, Johan
Rinza, Javier
De Mendiburu, Felipe
Zorogastua, Percy
Villaorduña, Liliana
Quiroz, Roberto
author_role author
author2 Ramirez, David A.
Turin Canchaya, Cecilia Claudia
Schaeffer, Sean M.
Konkel, Julie
Ninanya, Johan
Rinza, Javier
De Mendiburu, Felipe
Zorogastua, Percy
Villaorduña, Liliana
Quiroz, Roberto
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Carbajal, Mariella
Ramirez, David A.
Turin Canchaya, Cecilia Claudia
Schaeffer, Sean M.
Konkel, Julie
Ninanya, Johan
Rinza, Javier
De Mendiburu, Felipe
Zorogastua, Percy
Villaorduña, Liliana
Quiroz, Roberto
dc.subject.es_PE.fl_str_mv Artificial neural networks
Bofedales
13C isotope composition
Extreme gradient boosting
Grasslands
Random forest
Refractory C fraction
Support vector machine
topic Artificial neural networks
Bofedales
13C isotope composition
Extreme gradient boosting
Grasslands
Random forest
Refractory C fraction
Support vector machine
https://purl.org/pe-repo/ocde/ford#4.01.04
Redes de neuronas
Fishing nets
Tierra húmeda
Wetlands
Isótopo
Isotopes
Gradiente de temperatura
Temperature gradients
Grasslands
Pradera
Machine learning
Aprendizaje automático
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.04
dc.subject.agrovoc.es_PE.fl_str_mv Redes de neuronas
Fishing nets
Tierra húmeda
Wetlands
Isótopo
Isotopes
Gradiente de temperatura
Temperature gradients
Grasslands
Pradera
Machine learning
Aprendizaje automático
description Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotope composition of SOC (d13CSOC)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (‘‘bofedales’’) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variablesusing remote sensing data, land-use and landcover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and d13CSOC prediction, whereas ANN was the best to model RSOC. ‘‘Bofedales’’ showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted d13CSOC (- 27.0 ± 0.44 &) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of ‘‘bofedales’’ as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and d13CSOC. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-30T18:24:09Z
dc.date.available.none.fl_str_mv 2024-09-30T18:24:09Z
dc.date.issued.fl_str_mv 2024-09-09
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-7
dc.identifier.issn.none.fl_str_mv 1435-0629
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2576
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10021-024-00928-7
identifier_str_mv Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-7
1435-0629
url https://hdl.handle.net/20.500.12955/2576
https://doi.org/10.1007/s10021-024-00928-7
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:1435-0629
dc.relation.ispartofseries.es_PE.fl_str_mv Ecosystems
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Springer
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/7d582b30-1de3-427c-b58f-363b43dcb9c3/download
https://repositorio.inia.gob.pe/bitstreams/ef17baf5-3fbc-4afd-a100-dc63ec88eb63/download
https://repositorio.inia.gob.pe/bitstreams/bbed3cb0-7f2d-495b-90cd-2883c3972947/download
https://repositorio.inia.gob.pe/bitstreams/cf9ed7da-c890-4eaf-a811-41af58c56301/download
bitstream.checksum.fl_str_mv c1c5bd49c1c08e906d2a7d86141f5abd
8a4605be74aa9ea9d79846c1fba20a33
93ab92150f2b6ac2acd4d068138c6dd6
befab4b98ac788fea72e4e4b45de2293
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331656415510528
spelling Carbajal, MariellaRamirez, David A.Turin Canchaya, Cecilia ClaudiaSchaeffer, Sean M.Konkel, JulieNinanya, JohanRinza, JavierDe Mendiburu, FelipeZorogastua, PercyVillaorduña, LilianaQuiroz, Roberto2024-09-30T18:24:09Z2024-09-30T18:24:09Z2024-09-09Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-71435-0629https://hdl.handle.net/20.500.12955/2576https://doi.org/10.1007/s10021-024-00928-7Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotope composition of SOC (d13CSOC)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (‘‘bofedales’’) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variablesusing remote sensing data, land-use and landcover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and d13CSOC prediction, whereas ANN was the best to model RSOC. ‘‘Bofedales’’ showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted d13CSOC (- 27.0 ± 0.44 &) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of ‘‘bofedales’’ as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and d13CSOC. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.application/pdfengSpringerUSurn:issn:1435-0629Ecosystemsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAArtificial neural networksBofedales13C isotope compositionExtreme gradient boostingGrasslandsRandom forestRefractory C fractionSupport vector machinehttps://purl.org/pe-repo/ocde/ford#4.01.04Redes de neuronasFishing netsTierra húmedaWetlandsIsótopoIsotopesGradiente de temperaturaTemperature gradientsGrasslandsPraderaMachine learningAprendizaje automáticoFrom rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approachinfo:eu-repo/semantics/articleORIGINALCarbajal_et-al_2024_land-use_change_soil.pdfCarbajal_et-al_2024_land-use_change_soil.pdfapplication/pdf3101832https://repositorio.inia.gob.pe/bitstreams/7d582b30-1de3-427c-b58f-363b43dcb9c3/downloadc1c5bd49c1c08e906d2a7d86141f5abdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/ef17baf5-3fbc-4afd-a100-dc63ec88eb63/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCarbajal_et-al_2024_land-use_change_soil.pdf.txtCarbajal_et-al_2024_land-use_change_soil.pdf.txtExtracted texttext/plain82859https://repositorio.inia.gob.pe/bitstreams/bbed3cb0-7f2d-495b-90cd-2883c3972947/download93ab92150f2b6ac2acd4d068138c6dd6MD53THUMBNAILCarbajal_et-al_2024_land-use_change_soil.pdf.jpgCarbajal_et-al_2024_land-use_change_soil.pdf.jpgGenerated Thumbnailimage/jpeg1831https://repositorio.inia.gob.pe/bitstreams/cf9ed7da-c890-4eaf-a811-41af58c56301/downloadbefab4b98ac788fea72e4e4b45de2293MD5420.500.12955/2576oai:repositorio.inia.gob.pe:20.500.12955/25762024-09-30 13:24:11.23https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.904861
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).