From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
Descripción del Articulo
Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotop...
| Autores: | , , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:null:20.500.12955/2576 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2576 https://doi.org/10.1007/s10021-024-00928-7 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial neural networks Bofedales 13C isotope composition Extreme gradient boosting Grasslands Random forest Refractory C fraction Support vector machine https://purl.org/pe-repo/ocde/ford#4.01.04 Redes de neuronas Fishing nets Tierra húmeda Wetlands Isótopo Isotopes Gradiente de temperatura Temperature gradients Pradera Machine learning Aprendizaje automático |
| id |
INIA_9b7db389c9afc61c64d06407812567a2 |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/2576 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| title |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| spellingShingle |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach Carbajal, Mariella Artificial neural networks Bofedales 13C isotope composition Extreme gradient boosting Grasslands Random forest Refractory C fraction Support vector machine https://purl.org/pe-repo/ocde/ford#4.01.04 Redes de neuronas Fishing nets Tierra húmeda Wetlands Isótopo Isotopes Gradiente de temperatura Temperature gradients Grasslands Pradera Machine learning Aprendizaje automático |
| title_short |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| title_full |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| title_fullStr |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| title_full_unstemmed |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| title_sort |
From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach |
| author |
Carbajal, Mariella |
| author_facet |
Carbajal, Mariella Ramirez, David A. Turin Canchaya, Cecilia Claudia Schaeffer, Sean M. Konkel, Julie Ninanya, Johan Rinza, Javier De Mendiburu, Felipe Zorogastua, Percy Villaorduña, Liliana Quiroz, Roberto |
| author_role |
author |
| author2 |
Ramirez, David A. Turin Canchaya, Cecilia Claudia Schaeffer, Sean M. Konkel, Julie Ninanya, Johan Rinza, Javier De Mendiburu, Felipe Zorogastua, Percy Villaorduña, Liliana Quiroz, Roberto |
| author2_role |
author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Carbajal, Mariella Ramirez, David A. Turin Canchaya, Cecilia Claudia Schaeffer, Sean M. Konkel, Julie Ninanya, Johan Rinza, Javier De Mendiburu, Felipe Zorogastua, Percy Villaorduña, Liliana Quiroz, Roberto |
| dc.subject.es_PE.fl_str_mv |
Artificial neural networks Bofedales 13C isotope composition Extreme gradient boosting Grasslands Random forest Refractory C fraction Support vector machine |
| topic |
Artificial neural networks Bofedales 13C isotope composition Extreme gradient boosting Grasslands Random forest Refractory C fraction Support vector machine https://purl.org/pe-repo/ocde/ford#4.01.04 Redes de neuronas Fishing nets Tierra húmeda Wetlands Isótopo Isotopes Gradiente de temperatura Temperature gradients Grasslands Pradera Machine learning Aprendizaje automático |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.04 |
| dc.subject.agrovoc.es_PE.fl_str_mv |
Redes de neuronas Fishing nets Tierra húmeda Wetlands Isótopo Isotopes Gradiente de temperatura Temperature gradients Grasslands Pradera Machine learning Aprendizaje automático |
| description |
Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotope composition of SOC (d13CSOC)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (‘‘bofedales’’) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variablesusing remote sensing data, land-use and landcover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and d13CSOC prediction, whereas ANN was the best to model RSOC. ‘‘Bofedales’’ showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted d13CSOC (- 27.0 ± 0.44 &) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of ‘‘bofedales’’ as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and d13CSOC. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-30T18:24:09Z |
| dc.date.available.none.fl_str_mv |
2024-09-30T18:24:09Z |
| dc.date.issued.fl_str_mv |
2024-09-09 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-7 |
| dc.identifier.issn.none.fl_str_mv |
1435-0629 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2576 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s10021-024-00928-7 |
| identifier_str_mv |
Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-7 1435-0629 |
| url |
https://hdl.handle.net/20.500.12955/2576 https://doi.org/10.1007/s10021-024-00928-7 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:1435-0629 |
| dc.relation.ispartofseries.es_PE.fl_str_mv |
Ecosystems |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Springer |
| dc.publisher.country.es_PE.fl_str_mv |
US |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/7d582b30-1de3-427c-b58f-363b43dcb9c3/download https://repositorio.inia.gob.pe/bitstreams/ef17baf5-3fbc-4afd-a100-dc63ec88eb63/download https://repositorio.inia.gob.pe/bitstreams/bbed3cb0-7f2d-495b-90cd-2883c3972947/download https://repositorio.inia.gob.pe/bitstreams/cf9ed7da-c890-4eaf-a811-41af58c56301/download |
| bitstream.checksum.fl_str_mv |
c1c5bd49c1c08e906d2a7d86141f5abd 8a4605be74aa9ea9d79846c1fba20a33 93ab92150f2b6ac2acd4d068138c6dd6 befab4b98ac788fea72e4e4b45de2293 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331656415510528 |
| spelling |
Carbajal, MariellaRamirez, David A.Turin Canchaya, Cecilia ClaudiaSchaeffer, Sean M.Konkel, JulieNinanya, JohanRinza, JavierDe Mendiburu, FelipeZorogastua, PercyVillaorduña, LilianaQuiroz, Roberto2024-09-30T18:24:09Z2024-09-30T18:24:09Z2024-09-09Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-71435-0629https://hdl.handle.net/20.500.12955/2576https://doi.org/10.1007/s10021-024-00928-7Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotope composition of SOC (d13CSOC)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (‘‘bofedales’’) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variablesusing remote sensing data, land-use and landcover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and d13CSOC prediction, whereas ANN was the best to model RSOC. ‘‘Bofedales’’ showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted d13CSOC (- 27.0 ± 0.44 &) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of ‘‘bofedales’’ as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and d13CSOC. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.application/pdfengSpringerUSurn:issn:1435-0629Ecosystemsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAArtificial neural networksBofedales13C isotope compositionExtreme gradient boostingGrasslandsRandom forestRefractory C fractionSupport vector machinehttps://purl.org/pe-repo/ocde/ford#4.01.04Redes de neuronasFishing netsTierra húmedaWetlandsIsótopoIsotopesGradiente de temperaturaTemperature gradientsGrasslandsPraderaMachine learningAprendizaje automáticoFrom rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approachinfo:eu-repo/semantics/articleORIGINALCarbajal_et-al_2024_land-use_change_soil.pdfCarbajal_et-al_2024_land-use_change_soil.pdfapplication/pdf3101832https://repositorio.inia.gob.pe/bitstreams/7d582b30-1de3-427c-b58f-363b43dcb9c3/downloadc1c5bd49c1c08e906d2a7d86141f5abdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/ef17baf5-3fbc-4afd-a100-dc63ec88eb63/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCarbajal_et-al_2024_land-use_change_soil.pdf.txtCarbajal_et-al_2024_land-use_change_soil.pdf.txtExtracted texttext/plain82859https://repositorio.inia.gob.pe/bitstreams/bbed3cb0-7f2d-495b-90cd-2883c3972947/download93ab92150f2b6ac2acd4d068138c6dd6MD53THUMBNAILCarbajal_et-al_2024_land-use_change_soil.pdf.jpgCarbajal_et-al_2024_land-use_change_soil.pdf.jpgGenerated Thumbnailimage/jpeg1831https://repositorio.inia.gob.pe/bitstreams/cf9ed7da-c890-4eaf-a811-41af58c56301/downloadbefab4b98ac788fea72e4e4b45de2293MD5420.500.12955/2576oai:repositorio.inia.gob.pe:20.500.12955/25762024-09-30 13:24:11.23https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.904861 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).