Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
Descripción del Articulo
Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these p...
| Autores: | , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2681 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2681 https://doi.org/10.3390/agriengineering7030070 |
| Nivel de acceso: | acceso abierto |
| Materia: | fertility soil mapping CART random forest precision agriculture https://purl.org/pe-repo/ocde/ford#4.01.04 Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión |
| id |
INIA_925081f160b68c450a0be4d1df1e1abb |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2681 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| title |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| spellingShingle |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru Enriquez Pinedo, Lucia Carolina fertility soil mapping CART random forest precision agriculture https://purl.org/pe-repo/ocde/ford#4.01.04 Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión |
| title_short |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| title_full |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| title_fullStr |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| title_full_unstemmed |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| title_sort |
Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru |
| author |
Enriquez Pinedo, Lucia Carolina |
| author_facet |
Enriquez Pinedo, Lucia Carolina Ortega Quispe, Kevin Abner Ccopi Trucios, Dennis Rios Chavarria, Claudia Sofía Urquizo Barrera, Julio Patricio Rosales, Solanch Rosy Alejandro Mendez, Lidiana Rene Oliva Cruz, Manuel Barboza Castillo, Elgar Pizarro Carcausto , Samuel Edwin |
| author_role |
author |
| author2 |
Ortega Quispe, Kevin Abner Ccopi Trucios, Dennis Rios Chavarria, Claudia Sofía Urquizo Barrera, Julio Patricio Rosales, Solanch Rosy Alejandro Mendez, Lidiana Rene Oliva Cruz, Manuel Barboza Castillo, Elgar Pizarro Carcausto , Samuel Edwin |
| author2_role |
author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Enriquez Pinedo, Lucia Carolina Ortega Quispe, Kevin Abner Ccopi Trucios, Dennis Rios Chavarria, Claudia Sofía Urquizo Barrera, Julio Patricio Rosales, Solanch Rosy Alejandro Mendez, Lidiana Rene Oliva Cruz, Manuel Barboza Castillo, Elgar Pizarro Carcausto , Samuel Edwin |
| dc.subject.none.fl_str_mv |
fertility soil mapping CART random forest precision agriculture |
| topic |
fertility soil mapping CART random forest precision agriculture https://purl.org/pe-repo/ocde/ford#4.01.04 Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.04 |
| dc.subject.agrovoc.none.fl_str_mv |
Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión |
| description |
Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of 72% for N, 83% for P, 87% for K, 85% for OM, and 70% for EC in 2023. Significant spatiotemporal variations were observed between 2022 and 2023, including an increase in P (14.87 ppm) and a reduction in EC (-0.954 mS/m). High-resolution UAV imagery combined with machine learning proved highly effective for monitoring soil fertility. This approach, tailored to the Peruvian Andes, integrates spectral indices and field-collected data, offering innovative tools to optimize fertilization practices, address soil management challenges, and merge modern technology with traditional methods for sustainable agricultural practices. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-03-24T05:08:33Z |
| dc.date.available.none.fl_str_mv |
2025-03-24T05:08:33Z |
| dc.date.issued.fl_str_mv |
2025-03-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2681 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/agriengineering7030070 |
| identifier_str_mv |
Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070 |
| url |
http://hdl.handle.net/20.500.12955/2681 https://doi.org/10.3390/agriengineering7030070 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
AgriEngineering |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| dc.publisher.country.none.fl_str_mv |
CH |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/9ce205f8-5448-4cc4-b196-cf531831eeda/download https://repositorio.inia.gob.pe/bitstreams/abbc9572-518f-493a-9045-c0381c4fcb7a/download |
| bitstream.checksum.fl_str_mv |
b83714dd98d2b2d1cae6b3e3fdcc6572 a1dff3722e05e29dac20fa1a97a12ccf |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1834599919529230336 |
| spelling |
Enriquez Pinedo, Lucia CarolinaOrtega Quispe, Kevin AbnerCcopi Trucios, DennisRios Chavarria, Claudia SofíaUrquizo Barrera, JulioPatricio Rosales, Solanch RosyAlejandro Mendez, Lidiana ReneOliva Cruz, ManuelBarboza Castillo, ElgarPizarro Carcausto , Samuel Edwin2025-03-24T05:08:33Z2025-03-24T05:08:33Z2025-03-06Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070http://hdl.handle.net/20.500.12955/2681https://doi.org/10.3390/agriengineering7030070Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of 72% for N, 83% for P, 87% for K, 85% for OM, and 70% for EC in 2023. Significant spatiotemporal variations were observed between 2022 and 2023, including an increase in P (14.87 ppm) and a reduction in EC (-0.954 mS/m). High-resolution UAV imagery combined with machine learning proved highly effective for monitoring soil fertility. This approach, tailored to the Peruvian Andes, integrates spectral indices and field-collected data, offering innovative tools to optimize fertilization practices, address soil management challenges, and merge modern technology with traditional methods for sustainable agricultural practices.The Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government provided funding for this study through the project “Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos" (grant number CUI 2449640). It also received support from the Vice-Rectorate for Research of the Universidad Nacional del Amazonas Toribio Rodríguez de Mendoza—UNTRM. Special thanks are extended to the collaborators involved in field data collection and assistants of the Precision Agriculture Project (CUI 2449640) as well as other research programs of the “Estación Experimental Agraria Santa Ana”, INIA.application/pdfengMDPICHAgriEngineeringinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAfertility soil mappingCARTrandom forestprecision agriculturehttps://purl.org/pe-repo/ocde/ford#4.01.04Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisiónDetecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peruinfo:eu-repo/semantics/articleORIGINALDetecting Changes in Soil Fertility.pdfDetecting Changes in Soil Fertility.pdfapplication/pdf2910146https://repositorio.inia.gob.pe/bitstreams/9ce205f8-5448-4cc4-b196-cf531831eeda/downloadb83714dd98d2b2d1cae6b3e3fdcc6572MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/abbc9572-518f-493a-9045-c0381c4fcb7a/downloada1dff3722e05e29dac20fa1a97a12ccfMD5220.500.12955/2681oai:repositorio.inia.gob.pe:20.500.12955/26812025-03-24 00:08:33.42https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.947363 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).