Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru

Descripción del Articulo

Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these p...

Descripción completa

Detalles Bibliográficos
Autores: Enriquez Pinedo, Lucia Carolina, Ortega Quispe, Kevin Abner, Ccopi Trucios, Dennis, Rios Chavarria, Claudia Sofía, Urquizo Barrera, Julio, Patricio Rosales, Solanch Rosy, Alejandro Mendez, Lidiana Rene, Oliva Cruz, Manuel, Barboza Castillo, Elgar, Pizarro Carcausto , Samuel Edwin
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2681
Enlace del recurso:http://hdl.handle.net/20.500.12955/2681
https://doi.org/10.3390/agriengineering7030070
Nivel de acceso:acceso abierto
Materia:fertility soil mapping
CART
random forest
precision agriculture
https://purl.org/pe-repo/ocde/ford#4.01.04
Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión
id INIA_925081f160b68c450a0be4d1df1e1abb
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2681
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
title Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
spellingShingle Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
Enriquez Pinedo, Lucia Carolina
fertility soil mapping
CART
random forest
precision agriculture
https://purl.org/pe-repo/ocde/ford#4.01.04
Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión
title_short Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
title_full Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
title_fullStr Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
title_full_unstemmed Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
title_sort Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
author Enriquez Pinedo, Lucia Carolina
author_facet Enriquez Pinedo, Lucia Carolina
Ortega Quispe, Kevin Abner
Ccopi Trucios, Dennis
Rios Chavarria, Claudia Sofía
Urquizo Barrera, Julio
Patricio Rosales, Solanch Rosy
Alejandro Mendez, Lidiana Rene
Oliva Cruz, Manuel
Barboza Castillo, Elgar
Pizarro Carcausto , Samuel Edwin
author_role author
author2 Ortega Quispe, Kevin Abner
Ccopi Trucios, Dennis
Rios Chavarria, Claudia Sofía
Urquizo Barrera, Julio
Patricio Rosales, Solanch Rosy
Alejandro Mendez, Lidiana Rene
Oliva Cruz, Manuel
Barboza Castillo, Elgar
Pizarro Carcausto , Samuel Edwin
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Enriquez Pinedo, Lucia Carolina
Ortega Quispe, Kevin Abner
Ccopi Trucios, Dennis
Rios Chavarria, Claudia Sofía
Urquizo Barrera, Julio
Patricio Rosales, Solanch Rosy
Alejandro Mendez, Lidiana Rene
Oliva Cruz, Manuel
Barboza Castillo, Elgar
Pizarro Carcausto , Samuel Edwin
dc.subject.none.fl_str_mv fertility soil mapping
CART
random forest
precision agriculture
topic fertility soil mapping
CART
random forest
precision agriculture
https://purl.org/pe-repo/ocde/ford#4.01.04
Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.04
dc.subject.agrovoc.none.fl_str_mv Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión
description Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of 72% for N, 83% for P, 87% for K, 85% for OM, and 70% for EC in 2023. Significant spatiotemporal variations were observed between 2022 and 2023, including an increase in P (14.87 ppm) and a reduction in EC (-0.954 mS/m). High-resolution UAV imagery combined with machine learning proved highly effective for monitoring soil fertility. This approach, tailored to the Peruvian Andes, integrates spectral indices and field-collected data, offering innovative tools to optimize fertilization practices, address soil management challenges, and merge modern technology with traditional methods for sustainable agricultural practices.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-03-24T05:08:33Z
dc.date.available.none.fl_str_mv 2025-03-24T05:08:33Z
dc.date.issued.fl_str_mv 2025-03-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2681
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/agriengineering7030070
identifier_str_mv Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070
url http://hdl.handle.net/20.500.12955/2681
https://doi.org/10.3390/agriengineering7030070
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv AgriEngineering
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/9ce205f8-5448-4cc4-b196-cf531831eeda/download
https://repositorio.inia.gob.pe/bitstreams/abbc9572-518f-493a-9045-c0381c4fcb7a/download
bitstream.checksum.fl_str_mv b83714dd98d2b2d1cae6b3e3fdcc6572
a1dff3722e05e29dac20fa1a97a12ccf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1834599919529230336
spelling Enriquez Pinedo, Lucia CarolinaOrtega Quispe, Kevin AbnerCcopi Trucios, DennisRios Chavarria, Claudia SofíaUrquizo Barrera, JulioPatricio Rosales, Solanch RosyAlejandro Mendez, Lidiana ReneOliva Cruz, ManuelBarboza Castillo, ElgarPizarro Carcausto , Samuel Edwin2025-03-24T05:08:33Z2025-03-24T05:08:33Z2025-03-06Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070http://hdl.handle.net/20.500.12955/2681https://doi.org/10.3390/agriengineering7030070Remote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of 72% for N, 83% for P, 87% for K, 85% for OM, and 70% for EC in 2023. Significant spatiotemporal variations were observed between 2022 and 2023, including an increase in P (14.87 ppm) and a reduction in EC (-0.954 mS/m). High-resolution UAV imagery combined with machine learning proved highly effective for monitoring soil fertility. This approach, tailored to the Peruvian Andes, integrates spectral indices and field-collected data, offering innovative tools to optimize fertilization practices, address soil management challenges, and merge modern technology with traditional methods for sustainable agricultural practices.The Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government provided funding for this study through the project “Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos" (grant number CUI 2449640). It also received support from the Vice-Rectorate for Research of the Universidad Nacional del Amazonas Toribio Rodríguez de Mendoza—UNTRM. Special thanks are extended to the collaborators involved in field data collection and assistants of the Precision Agriculture Project (CUI 2449640) as well as other research programs of the “Estación Experimental Agraria Santa Ana”, INIA.application/pdfengMDPICHAgriEngineeringinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAfertility soil mappingCARTrandom forestprecision agriculturehttps://purl.org/pe-repo/ocde/ford#4.01.04Fertilidad del suelo; Cartografía; Teledetección; Agricultura de precisiónDetecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peruinfo:eu-repo/semantics/articleORIGINALDetecting Changes in Soil Fertility.pdfDetecting Changes in Soil Fertility.pdfapplication/pdf2910146https://repositorio.inia.gob.pe/bitstreams/9ce205f8-5448-4cc4-b196-cf531831eeda/downloadb83714dd98d2b2d1cae6b3e3fdcc6572MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/abbc9572-518f-493a-9045-c0381c4fcb7a/downloada1dff3722e05e29dac20fa1a97a12ccfMD5220.500.12955/2681oai:repositorio.inia.gob.pe:20.500.12955/26812025-03-24 00:08:33.42https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.947363
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).