Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
Descripción del Articulo
Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on p...
Autores: | , , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2610 |
Enlace del recurso: | http://hdl.handle.net/20.500.12955/2610 https://doi.org/10.3390/agriculture14111876 |
Nivel de acceso: | acceso abierto |
Materia: | Precision agriculture Remote sensing Crop monitoring Machine learning https://purl.org/pe-repo/ocde/ford#4.01.06 |
id |
INIA_54f89f69d467602ed04e554f00246e45 |
---|---|
oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2610 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.none.fl_str_mv |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
title |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
spellingShingle |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru Ccopi Trucios, Dennis Precision agriculture Remote sensing Crop monitoring Machine learning https://purl.org/pe-repo/ocde/ford#4.01.06 Machine learning |
title_short |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
title_full |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
title_fullStr |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
title_full_unstemmed |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
title_sort |
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru |
author |
Ccopi Trucios, Dennis |
author_facet |
Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Rios Chavarria, Claudia Enriquez Pinedo, Lucia Patricio Rosales, Solanch Ore Aquino, Zoila Casanova Nuñez Melgar, David Agurto Piñarreta, Alex Iván Zúñiga López, Luz Noemí Urquizo Barrera, Julio |
author_role |
author |
author2 |
Ortega Quispe, Kevin Castañeda Tinco, Italo Rios Chavarria, Claudia Enriquez Pinedo, Lucia Patricio Rosales, Solanch Ore Aquino, Zoila Casanova Nuñez Melgar, David Agurto Piñarreta, Alex Iván Zúñiga López, Luz Noemí Urquizo Barrera, Julio |
author2_role |
author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Rios Chavarria, Claudia Enriquez Pinedo, Lucia Patricio Rosales, Solanch Ore Aquino, Zoila Casanova Nuñez Melgar, David Agurto Piñarreta, Alex Iván Zúñiga López, Luz Noemí Urquizo Barrera, Julio |
dc.subject.none.fl_str_mv |
Precision agriculture Remote sensing Crop monitoring Machine learning |
topic |
Precision agriculture Remote sensing Crop monitoring Machine learning https://purl.org/pe-repo/ocde/ford#4.01.06 Machine learning |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
dc.subject.agrovoc.none.fl_str_mv |
Machine learning |
description |
Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-28T15:00:18Z |
dc.date.available.none.fl_str_mv |
2024-11-28T15:00:18Z |
dc.date.issued.fl_str_mv |
2024-10-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture14111876 |
dc.identifier.issn.none.fl_str_mv |
2077-0472 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2610 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/agriculture14111876 |
identifier_str_mv |
Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture14111876 2077-0472 |
url |
http://hdl.handle.net/20.500.12955/2610 https://doi.org/10.3390/agriculture14111876 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2077-0472 |
dc.relation.ispartofseries.none.fl_str_mv |
Agriculture |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
dc.publisher.country.none.fl_str_mv |
CH |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/3fe82a1b-31ee-4f38-9c20-ceb5c8d6b06a/download https://repositorio.inia.gob.pe/bitstreams/e46cd588-5621-4f96-af22-9e6dd20255b6/download |
bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf a200e3798d3412b7c961f40d57dd14ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1834599921853923328 |
spelling |
Ccopi Trucios, DennisOrtega Quispe, KevinCastañeda Tinco, ItaloRios Chavarria, ClaudiaEnriquez Pinedo, LuciaPatricio Rosales, SolanchOre Aquino, ZoilaCasanova Nuñez Melgar, DavidAgurto Piñarreta, Alex IvánZúñiga López, Luz NoemíUrquizo Barrera, Julio2024-11-28T15:00:18Z2024-11-28T15:00:18Z2024-10-24Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture141118762077-0472http://hdl.handle.net/20.500.12955/2610https://doi.org/10.3390/agriculture14111876Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.application/pdfengMDPICHurn:issn: 2077-0472Agricultureinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAPrecision agricultureRemote sensingCrop monitoringMachine learninghttps://purl.org/pe-repo/ocde/ford#4.01.06Machine learningUsing UAV images and phenotypic traits to predict potato morphology and yield in Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/3fe82a1b-31ee-4f38-9c20-ceb5c8d6b06a/downloada1dff3722e05e29dac20fa1a97a12ccfMD53ORIGINALCcopi_et-al_2024 Using_UAV_potato.pdfCcopi_et-al_2024 Using_UAV_potato.pdfarticleapplication/pdf1018405https://repositorio.inia.gob.pe/bitstreams/e46cd588-5621-4f96-af22-9e6dd20255b6/downloada200e3798d3412b7c961f40d57dd14adMD5420.500.12955/2610oai:repositorio.inia.gob.pe:20.500.12955/26102025-05-25 20:11:49.331https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
score |
13.871978 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).