Using UAV images and phenotypic traits to predict potato morphology and yield in Peru

Descripción del Articulo

Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on p...

Descripción completa

Detalles Bibliográficos
Autores: Ccopi Trucios, Dennis, Ortega Quispe, Kevin, Castañeda Tinco, Italo, Rios Chavarria, Claudia, Enriquez Pinedo, Lucia, Patricio Rosales, Solanch, Ore Aquino, Zoila, Casanova Nuñez Melgar, David, Agurto Piñarreta, Alex Iván, Zúñiga López, Luz Noemí, Urquizo Barrera, Julio
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2610
Enlace del recurso:http://hdl.handle.net/20.500.12955/2610
https://doi.org/10.3390/agriculture14111876
Nivel de acceso:acceso abierto
Materia:Precision agriculture
Remote sensing
Crop monitoring
Machine learning
https://purl.org/pe-repo/ocde/ford#4.01.06
id INIA_54f89f69d467602ed04e554f00246e45
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2610
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
spellingShingle Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
Ccopi Trucios, Dennis
Precision agriculture
Remote sensing
Crop monitoring
Machine learning
https://purl.org/pe-repo/ocde/ford#4.01.06
Machine learning
title_short Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_full Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_fullStr Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_full_unstemmed Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_sort Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
author Ccopi Trucios, Dennis
author_facet Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Rios Chavarria, Claudia
Enriquez Pinedo, Lucia
Patricio Rosales, Solanch
Ore Aquino, Zoila
Casanova Nuñez Melgar, David
Agurto Piñarreta, Alex Iván
Zúñiga López, Luz Noemí
Urquizo Barrera, Julio
author_role author
author2 Ortega Quispe, Kevin
Castañeda Tinco, Italo
Rios Chavarria, Claudia
Enriquez Pinedo, Lucia
Patricio Rosales, Solanch
Ore Aquino, Zoila
Casanova Nuñez Melgar, David
Agurto Piñarreta, Alex Iván
Zúñiga López, Luz Noemí
Urquizo Barrera, Julio
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Rios Chavarria, Claudia
Enriquez Pinedo, Lucia
Patricio Rosales, Solanch
Ore Aquino, Zoila
Casanova Nuñez Melgar, David
Agurto Piñarreta, Alex Iván
Zúñiga López, Luz Noemí
Urquizo Barrera, Julio
dc.subject.none.fl_str_mv Precision agriculture
Remote sensing
Crop monitoring
Machine learning
topic Precision agriculture
Remote sensing
Crop monitoring
Machine learning
https://purl.org/pe-repo/ocde/ford#4.01.06
Machine learning
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.none.fl_str_mv Machine learning
description Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-28T15:00:18Z
dc.date.available.none.fl_str_mv 2024-11-28T15:00:18Z
dc.date.issued.fl_str_mv 2024-10-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture14111876
dc.identifier.issn.none.fl_str_mv 2077-0472
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2610
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/agriculture14111876
identifier_str_mv Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture14111876
2077-0472
url http://hdl.handle.net/20.500.12955/2610
https://doi.org/10.3390/agriculture14111876
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2077-0472
dc.relation.ispartofseries.none.fl_str_mv Agriculture
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/3fe82a1b-31ee-4f38-9c20-ceb5c8d6b06a/download
https://repositorio.inia.gob.pe/bitstreams/e46cd588-5621-4f96-af22-9e6dd20255b6/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
a200e3798d3412b7c961f40d57dd14ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1834599921853923328
spelling Ccopi Trucios, DennisOrtega Quispe, KevinCastañeda Tinco, ItaloRios Chavarria, ClaudiaEnriquez Pinedo, LuciaPatricio Rosales, SolanchOre Aquino, ZoilaCasanova Nuñez Melgar, DavidAgurto Piñarreta, Alex IvánZúñiga López, Luz NoemíUrquizo Barrera, Julio2024-11-28T15:00:18Z2024-11-28T15:00:18Z2024-10-24Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture141118762077-0472http://hdl.handle.net/20.500.12955/2610https://doi.org/10.3390/agriculture14111876Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.application/pdfengMDPICHurn:issn: 2077-0472Agricultureinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAPrecision agricultureRemote sensingCrop monitoringMachine learninghttps://purl.org/pe-repo/ocde/ford#4.01.06Machine learningUsing UAV images and phenotypic traits to predict potato morphology and yield in Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/3fe82a1b-31ee-4f38-9c20-ceb5c8d6b06a/downloada1dff3722e05e29dac20fa1a97a12ccfMD53ORIGINALCcopi_et-al_2024 Using_UAV_potato.pdfCcopi_et-al_2024 Using_UAV_potato.pdfarticleapplication/pdf1018405https://repositorio.inia.gob.pe/bitstreams/e46cd588-5621-4f96-af22-9e6dd20255b6/downloada200e3798d3412b7c961f40d57dd14adMD5420.500.12955/2610oai:repositorio.inia.gob.pe:20.500.12955/26102025-05-25 20:11:49.331https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).