Modeling growth curve parameters in Peruvian llamas using a Bayesian approach

Descripción del Articulo

The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly bod...

Descripción completa

Detalles Bibliográficos
Autores: Canaza Cayo, Ali William, Mamani Cato, Rubén Herberth, Churata Huacani, Roxana, Rodríguez Huanca, Francisco Halley, Calsin Cari, Maribel, Huacani Pacori, Ferdeynand Marcos, Cardenas Minaya, Oscar Efrain, de Sousa Bueno Filho, Júlio Sílvio
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2716
Enlace del recurso:http://hdl.handle.net/20.500.12955/2716
https://doi.org/10.1016/j.vas.2025.100447
Nivel de acceso:acceso abierto
Materia:Nonlinear models
Llamas
Body weight
Growth modeling
Bayesian framework
https://purl.org/pe-repo/ocde/ford#4.02.01
Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana
id INIA_4c6ed15596d6b184aa127a516f674956
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2716
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
spellingShingle Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
Canaza Cayo, Ali William
Nonlinear models
Llamas
Body weight
Growth modeling
Bayesian framework
https://purl.org/pe-repo/ocde/ford#4.02.01
Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana
title_short Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_full Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_fullStr Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_full_unstemmed Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_sort Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
author Canaza Cayo, Ali William
author_facet Canaza Cayo, Ali William
Mamani Cato, Rubén Herberth
Churata Huacani, Roxana
Rodríguez Huanca, Francisco Halley
Calsin Cari, Maribel
Huacani Pacori, Ferdeynand Marcos
Cardenas Minaya, Oscar Efrain
de Sousa Bueno Filho, Júlio Sílvio
author_role author
author2 Mamani Cato, Rubén Herberth
Churata Huacani, Roxana
Rodríguez Huanca, Francisco Halley
Calsin Cari, Maribel
Huacani Pacori, Ferdeynand Marcos
Cardenas Minaya, Oscar Efrain
de Sousa Bueno Filho, Júlio Sílvio
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Canaza Cayo, Ali William
Mamani Cato, Rubén Herberth
Churata Huacani, Roxana
Rodríguez Huanca, Francisco Halley
Calsin Cari, Maribel
Huacani Pacori, Ferdeynand Marcos
Cardenas Minaya, Oscar Efrain
de Sousa Bueno Filho, Júlio Sílvio
dc.subject.none.fl_str_mv Nonlinear models
Llamas
Body weight
Growth modeling
Bayesian framework
topic Nonlinear models
Llamas
Body weight
Growth modeling
Bayesian framework
https://purl.org/pe-repo/ocde/ford#4.02.01
Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.02.01
dc.subject.agrovoc.none.fl_str_mv Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana
description The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-10T21:17:50Z
dc.date.available.none.fl_str_mv 2025-04-10T21:17:50Z
dc.date.issued.fl_str_mv 2025-03-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-7
dc.identifier.issn.none.fl_str_mv 2451-943X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2716
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.vas.2025.100447
identifier_str_mv Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-7
2451-943X
url http://hdl.handle.net/20.500.12955/2716
https://doi.org/10.1016/j.vas.2025.100447
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2451-943X
dc.relation.ispartofseries.none.fl_str_mv Veterinary and Animal Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/e2899515-7980-4cfc-bdb8-9f9d31d7f3f6/download
https://repositorio.inia.gob.pe/bitstreams/67ba491e-0530-4e2f-ad05-f1009ee1fa6e/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
1b176645ad7ad33228922d9f7e0d7182
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1834599922742067200
spelling Canaza Cayo, Ali WilliamMamani Cato, Rubén HerberthChurata Huacani, RoxanaRodríguez Huanca, Francisco HalleyCalsin Cari, MaribelHuacani Pacori, Ferdeynand MarcosCardenas Minaya, Oscar Efrainde Sousa Bueno Filho, Júlio Sílvio2025-04-10T21:17:50Z2025-04-10T21:17:50Z2025-03-20Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-72451-943Xhttp://hdl.handle.net/20.500.12955/2716https://doi.org/10.1016/j.vas.2025.100447The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects.The authors thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais - process number 5.02/2022), the Federal University of Lavras, Brazil, for their funding support. We also thank the 067_PI project of the National Agricultural Innovation Program (PNIA) of INIA for the financial support and data, Dr. Teodosio Huanca, and the technical staff of the Quimsachata Experimental Center, INIA, Puno, Peru, for their assistance in carrying out this research.application/pdfengElsevierNLurn:issn:2451-943XVeterinary and Animal Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIANonlinear modelsLlamasBody weightGrowth modelingBayesian frameworkhttps://purl.org/pe-repo/ocde/ford#4.02.01Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesianaModeling growth curve parameters in Peruvian llamas using a Bayesian approachinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/e2899515-7980-4cfc-bdb8-9f9d31d7f3f6/downloada1dff3722e05e29dac20fa1a97a12ccfMD52ORIGINALCanaza_et-al_2025_growth_llama.pdfCanaza_et-al_2025_growth_llama.pdfapplication/pdf1687467https://repositorio.inia.gob.pe/bitstreams/67ba491e-0530-4e2f-ad05-f1009ee1fa6e/download1b176645ad7ad33228922d9f7e0d7182MD5320.500.12955/2716oai:repositorio.inia.gob.pe:20.500.12955/27162025-04-10 16:17:51.04https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.850303
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).