Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
Descripción del Articulo
The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly bod...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2716 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2716 https://doi.org/10.1016/j.vas.2025.100447 |
| Nivel de acceso: | acceso abierto |
| Materia: | Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana |
| id |
INIA_4c6ed15596d6b184aa127a516f674956 |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2716 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| spellingShingle |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach Canaza Cayo, Ali William Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana |
| title_short |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_full |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_fullStr |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_full_unstemmed |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_sort |
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| author |
Canaza Cayo, Ali William |
| author_facet |
Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio |
| author_role |
author |
| author2 |
Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio |
| dc.subject.none.fl_str_mv |
Nonlinear models Llamas Body weight Growth modeling Bayesian framework |
| topic |
Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.02.01 |
| dc.subject.agrovoc.none.fl_str_mv |
Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana |
| description |
The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-04-10T21:17:50Z |
| dc.date.available.none.fl_str_mv |
2025-04-10T21:17:50Z |
| dc.date.issued.fl_str_mv |
2025-03-20 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-7 |
| dc.identifier.issn.none.fl_str_mv |
2451-943X |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2716 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.vas.2025.100447 |
| identifier_str_mv |
Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-7 2451-943X |
| url |
http://hdl.handle.net/20.500.12955/2716 https://doi.org/10.1016/j.vas.2025.100447 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2451-943X |
| dc.relation.ispartofseries.none.fl_str_mv |
Veterinary and Animal Science |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| dc.publisher.country.none.fl_str_mv |
NL |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/e2899515-7980-4cfc-bdb8-9f9d31d7f3f6/download https://repositorio.inia.gob.pe/bitstreams/67ba491e-0530-4e2f-ad05-f1009ee1fa6e/download |
| bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf 1b176645ad7ad33228922d9f7e0d7182 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1834599922742067200 |
| spelling |
Canaza Cayo, Ali WilliamMamani Cato, Rubén HerberthChurata Huacani, RoxanaRodríguez Huanca, Francisco HalleyCalsin Cari, MaribelHuacani Pacori, Ferdeynand MarcosCardenas Minaya, Oscar Efrainde Sousa Bueno Filho, Júlio Sílvio2025-04-10T21:17:50Z2025-04-10T21:17:50Z2025-03-20Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-72451-943Xhttp://hdl.handle.net/20.500.12955/2716https://doi.org/10.1016/j.vas.2025.100447The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects.The authors thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais - process number 5.02/2022), the Federal University of Lavras, Brazil, for their funding support. We also thank the 067_PI project of the National Agricultural Innovation Program (PNIA) of INIA for the financial support and data, Dr. Teodosio Huanca, and the technical staff of the Quimsachata Experimental Center, INIA, Puno, Peru, for their assistance in carrying out this research.application/pdfengElsevierNLurn:issn:2451-943XVeterinary and Animal Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIANonlinear modelsLlamasBody weightGrowth modelingBayesian frameworkhttps://purl.org/pe-repo/ocde/ford#4.02.01Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesianaModeling growth curve parameters in Peruvian llamas using a Bayesian approachinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/e2899515-7980-4cfc-bdb8-9f9d31d7f3f6/downloada1dff3722e05e29dac20fa1a97a12ccfMD52ORIGINALCanaza_et-al_2025_growth_llama.pdfCanaza_et-al_2025_growth_llama.pdfapplication/pdf1687467https://repositorio.inia.gob.pe/bitstreams/67ba491e-0530-4e2f-ad05-f1009ee1fa6e/download1b176645ad7ad33228922d9f7e0d7182MD5320.500.12955/2716oai:repositorio.inia.gob.pe:20.500.12955/27162025-04-10 16:17:51.04https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.850303 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).