Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence

Descripción del Articulo

Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative e...

Descripción completa

Detalles Bibliográficos
Autores: Goycochea Casas, Gianmarco, Baselly Villanueva, Juan Rodrigo, Coimbra Limeira, Mathaus Messias, Eleto Torres, Carlos Moreira Miquelino, Garcia Leite, Hélio
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2293
Enlace del recurso:https://hdl.handle.net/20.500.12955/2293
https://doi.org/10.1016/j.tfp.2023.100440
Nivel de acceso:acceso abierto
Materia:Kohonen neural network
Forest conservation
Forest prevention
https://purl.org/pe-repo/ocde/ford#4.01.02
Conservación de montes
Forest protection
Protección forestal
Artificial intelligence
Inteligencia artificial
Descripción
Sumario:Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative efforts and employ diverse methodologies for forest monitoring. In this study, we propose an alternative approach to decision-making for forest preservation, aiming to classify the risk of forest loss in districts within the Peruvian Amazon rainforest. This classification enables sustainable forest management. To accomplish this, we utilized unsupervised learning artificial intelligence through Kohonen's neural network. The network was trained using a historical database spanning from 2001 to 2021, which includes variables such as forest cover and loss, climate, topography, hydrographic networks, and timber forest concessions. Through this approach, the network successfully established five clusters. Following preliminary analysis, we designated these clusters as: low, medium, high, very high, and extremely high risk of forest loss. Kohonen networks demonstrated their effectiveness in clustering forest loss and forest cover. The results indicate a shifting trend among the classes over time, with an increase in the categories exhibiting high and very high risk of forest cover loss. This study provides valuable information for decision-making in the prevention and conservation of Peruvian forests. We strongly recommend maintaining vigilance, particularly in districts classified as a very high or extremely high risk of losing forest cover.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).