Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)

Descripción del Articulo

The objectives of this study were to describe the growth of young llamas by the application of four non-linear functions (Gompertz, Logistic, Von Bertalanffy and Brody), evaluate the importance of fixed (environmental) effects (sex, type of llama, month and year of birth) on growth curve parameters...

Descripción completa

Detalles Bibliográficos
Autores: Canaza Cayo, A. W., Huanca Mamani, Teodosio, Gutiérrez, Juan Pablo, Beltrán, P. A.
Formato: artículo
Fecha de Publicación:2015
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/1687
Enlace del recurso:https://hdl.handle.net/20.500.12955/1687
https://doi.org/10.1016/j.smallrumres.2015.01.026
Nivel de acceso:acceso abierto
Materia:Non-linear functions
Environmental effects
Genetic parameters
Heritabilities
Genetic correlation
Llamas
https://purl.org/pe-repo/ocde/ford#4.02.00
id INIA_1c35037d928e7a5cd74e50a93582c89e
oai_identifier_str oai:null:20.500.12955/1687
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
spellingShingle Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
Canaza Cayo, A. W.
Non-linear functions
Environmental effects
Genetic parameters
Heritabilities
Genetic correlation
Llamas
https://purl.org/pe-repo/ocde/ford#4.02.00
title_short Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_full Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_fullStr Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_full_unstemmed Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_sort Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
author Canaza Cayo, A. W.
author_facet Canaza Cayo, A. W.
Huanca Mamani, Teodosio
Gutiérrez, Juan Pablo
Beltrán, P. A.
author_role author
author2 Huanca Mamani, Teodosio
Gutiérrez, Juan Pablo
Beltrán, P. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Canaza Cayo, A. W.
Huanca Mamani, Teodosio
Gutiérrez, Juan Pablo
Beltrán, P. A.
dc.subject.es_PE.fl_str_mv Non-linear functions
Environmental effects
Genetic parameters
Heritabilities
Genetic correlation
Llamas
topic Non-linear functions
Environmental effects
Genetic parameters
Heritabilities
Genetic correlation
Llamas
https://purl.org/pe-repo/ocde/ford#4.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.02.00
description The objectives of this study were to describe the growth of young llamas by the application of four non-linear functions (Gompertz, Logistic, Von Bertalanffy and Brody), evaluate the importance of fixed (environmental) effects (sex, type of llama, month and year of birth) on growth curve parameters and finally estimate the genetic parameters for growth curve parameters (A: asymptotic body weight and k: specific growth rate). A total of 35,691 monthly body weight records from birth up to 16 months of age from 2675 young llamas, collected from 1998 to 2008 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru were used. Growth curve parameters were estimated by non-linear procedures while genetic parameters were estimated by application of a bivariate animal model and the restricted maximum likelihood (REML) method. All non-linear functions closely fitted actual body weight measurements, while the Gompertz function provided the best fit in describing the growth data of young llamas. All environmental effects significantly influenced the asymptotic weight (A), while the specific growth rate (k) was only affected by the month and year of birth. Heritability estimates for parameters A and k were 0.10 and 0.01, respectively. Genetic correlation between A and k was high and negative (−0.82), indicating that a rapid decrease in growth rate after inflection point is associated with higher mature weight. Despite the low heritability estimates obtained herein, slight genetic gain(s) were observed in the current study suggesting that a selection program to change the slope of the growth curve of llamas may be feasible.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2022-05-26T19:22:23Z
dc.date.available.none.fl_str_mv 2022-05-26T19:22:23Z
dc.date.issued.fl_str_mv 2015-02-11
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Canaza, A.W.; Huanca, T.; Gutiérrez, J.P & Beltrán, P.A. (2015). Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research 130 (2015) 81–89. doi: 10.1016/j.smallrumres.2015.01.026
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/1687
dc.identifier.journal.es_PE.fl_str_mv Small Ruminant Research
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.smallrumres.2015.01.026
identifier_str_mv Canaza, A.W.; Huanca, T.; Gutiérrez, J.P & Beltrán, P.A. (2015). Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research 130 (2015) 81–89. doi: 10.1016/j.smallrumres.2015.01.026
Small Ruminant Research
url https://hdl.handle.net/20.500.12955/1687
https://doi.org/10.1016/j.smallrumres.2015.01.026
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv Small Ruminant Research 130 (2015) 81–89
dc.relation.publisherversion.es_PE.fl_str_mv https://doi.org/10.1016/j.smallrumres.2015.01.026
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.coverage.spatial.es_PE.fl_str_mv Perú
dc.publisher.es_PE.fl_str_mv ELSEVIER
dc.publisher.country.es_PE.fl_str_mv Israel
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/a3174008-39cd-4584-a89c-4b47c64c28d4/download
https://repositorio.inia.gob.pe/bitstreams/9b9dac01-f51b-4f0b-ac7c-d20c0940e57e/download
https://repositorio.inia.gob.pe/bitstreams/4b0227e0-59f1-42a0-80eb-68f17fb40a01/download
https://repositorio.inia.gob.pe/bitstreams/90f7985d-ab8f-4049-ad22-fcce1936115b/download
https://repositorio.inia.gob.pe/bitstreams/2467db71-701c-4940-9c32-cc94ed267c5d/download
https://repositorio.inia.gob.pe/bitstreams/79ac7359-dce1-4748-aa73-751b1ccddafc/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c130b3ff04af4565f63870cace0a573b
c130b3ff04af4565f63870cace0a573b
25cff8f87b5f095df6f9ab100ae1f541
25cff8f87b5f095df6f9ab100ae1f541
7ed15b7562b90cb5eadd8a5c8850e111
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331732726677504
spelling Canaza Cayo, A. W.Huanca Mamani, TeodosioGutiérrez, Juan PabloBeltrán, P. A.Perú2022-05-26T19:22:23Z2022-05-26T19:22:23Z2015-02-11Canaza, A.W.; Huanca, T.; Gutiérrez, J.P & Beltrán, P.A. (2015). Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research 130 (2015) 81–89. doi: 10.1016/j.smallrumres.2015.01.026https://hdl.handle.net/20.500.12955/1687Small Ruminant Researchhttps://doi.org/10.1016/j.smallrumres.2015.01.026The objectives of this study were to describe the growth of young llamas by the application of four non-linear functions (Gompertz, Logistic, Von Bertalanffy and Brody), evaluate the importance of fixed (environmental) effects (sex, type of llama, month and year of birth) on growth curve parameters and finally estimate the genetic parameters for growth curve parameters (A: asymptotic body weight and k: specific growth rate). A total of 35,691 monthly body weight records from birth up to 16 months of age from 2675 young llamas, collected from 1998 to 2008 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru were used. Growth curve parameters were estimated by non-linear procedures while genetic parameters were estimated by application of a bivariate animal model and the restricted maximum likelihood (REML) method. All non-linear functions closely fitted actual body weight measurements, while the Gompertz function provided the best fit in describing the growth data of young llamas. All environmental effects significantly influenced the asymptotic weight (A), while the specific growth rate (k) was only affected by the month and year of birth. Heritability estimates for parameters A and k were 0.10 and 0.01, respectively. Genetic correlation between A and k was high and negative (−0.82), indicating that a rapid decrease in growth rate after inflection point is associated with higher mature weight. Despite the low heritability estimates obtained herein, slight genetic gain(s) were observed in the current study suggesting that a selection program to change the slope of the growth curve of llamas may be feasible.Abstract. 1. Introduction. 2. Materials and methods. 3. Results and discussion. 4. Conclusion. References.application/pdfengELSEVIERIsraelSmall Ruminant Research 130 (2015) 81–89https://doi.org/10.1016/j.smallrumres.2015.01.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIANon-linear functionsEnvironmental effectsGenetic parametersHeritabilitiesGenetic correlationLlamashttps://purl.org/pe-repo/ocde/ford#4.02.00Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/a3174008-39cd-4584-a89c-4b47c64c28d4/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTModelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama).pdf.txtModelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama).pdf.txtExtracted texttext/plain39808https://repositorio.inia.gob.pe/bitstreams/9b9dac01-f51b-4f0b-ac7c-d20c0940e57e/downloadc130b3ff04af4565f63870cace0a573bMD53Canaza-et-al_2015_Young_Llamas.pdf.txtCanaza-et-al_2015_Young_Llamas.pdf.txtExtracted texttext/plain39808https://repositorio.inia.gob.pe/bitstreams/4b0227e0-59f1-42a0-80eb-68f17fb40a01/downloadc130b3ff04af4565f63870cace0a573bMD56THUMBNAILModelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama).pdf.jpgModelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama).pdf.jpgGenerated Thumbnailimage/jpeg1724https://repositorio.inia.gob.pe/bitstreams/90f7985d-ab8f-4049-ad22-fcce1936115b/download25cff8f87b5f095df6f9ab100ae1f541MD54Canaza-et-al_2015_Young_Llamas.pdf.jpgCanaza-et-al_2015_Young_Llamas.pdf.jpgGenerated Thumbnailimage/jpeg1724https://repositorio.inia.gob.pe/bitstreams/2467db71-701c-4940-9c32-cc94ed267c5d/download25cff8f87b5f095df6f9ab100ae1f541MD57ORIGINALCanaza-et-al_2015_Young_Llamas.pdfCanaza-et-al_2015_Young_Llamas.pdfapplication/pdf496904https://repositorio.inia.gob.pe/bitstreams/79ac7359-dce1-4748-aa73-751b1ccddafc/download7ed15b7562b90cb5eadd8a5c8850e111MD5520.500.12955/1687oai:repositorio.inia.gob.pe:20.500.12955/16872023-11-07 08:16:24.582https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).