Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
Descripción del Articulo
Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal c...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:null:20.500.12955/2577 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2577 https://doi.org/10.1016/j.ecoinf.2024.102738 |
| Nivel de acceso: | acceso abierto |
| Materia: | Fragmentation LULC Changes Classification Random Forest Amazon Forest https://purl.org/pe-repo/ocde/ford#1.06.13 Habitat fragmentation Fragmentacion de los hábitats Land use Utilización de la tierra Land cover Cobertura de suelos Machine learning Aprendizaje automático Amazonia Forest fragmentation Fragmentación de los bosques |
| id |
INIA_1be24dcd7dcbff54cd2c3322682468cf |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/2577 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| title |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| spellingShingle |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation Gómez Fernández, Darwin Fragmentation LULC Changes Classification Random Forest Amazon Forest https://purl.org/pe-repo/ocde/ford#1.06.13 Habitat fragmentation Fragmentacion de los hábitats Land use Utilización de la tierra Land cover Cobertura de suelos Machine learning Aprendizaje automático Amazonia Forest fragmentation Fragmentación de los bosques |
| title_short |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| title_full |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| title_fullStr |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| title_full_unstemmed |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| title_sort |
Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation |
| author |
Gómez Fernández, Darwin |
| author_facet |
Gómez Fernández, Darwin Salas López, Rolando Zabaleta Santisteban, Jhon Antony Medina Medina, Angel J. Goñas Goñas, Malluri Silva López, Jhonsy O. Oliva Cruz, Manuel Rojas Briceño, Nilton B. |
| author_role |
author |
| author2 |
Salas López, Rolando Zabaleta Santisteban, Jhon Antony Medina Medina, Angel J. Goñas Goñas, Malluri Silva López, Jhonsy O. Oliva Cruz, Manuel Rojas Briceño, Nilton B. |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Gómez Fernández, Darwin Salas López, Rolando Zabaleta Santisteban, Jhon Antony Medina Medina, Angel J. Goñas Goñas, Malluri Silva López, Jhonsy O. Oliva Cruz, Manuel Rojas Briceño, Nilton B. |
| dc.subject.es_PE.fl_str_mv |
Fragmentation LULC Changes Classification Random Forest Amazon Forest |
| topic |
Fragmentation LULC Changes Classification Random Forest Amazon Forest https://purl.org/pe-repo/ocde/ford#1.06.13 Habitat fragmentation Fragmentacion de los hábitats Land use Utilización de la tierra Land cover Cobertura de suelos Machine learning Aprendizaje automático Amazonia Forest fragmentation Fragmentación de los bosques |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.06.13 |
| dc.subject.agrovoc.es_PE.fl_str_mv |
Habitat fragmentation Fragmentacion de los hábitats Land use Utilización de la tierra Land cover Cobertura de suelos Machine learning Aprendizaje automático Amazonia Forest fragmentation Fragmentación de los bosques |
| description |
Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal combination significantly affects the accuracy and reliability of the final results. This research aimed to analyze landscape change and fragmentation in northwestern Peru. We utilized accurate land cover and land use (LULC) maps derived from Landsat imagery using Google Earth Engine (GEE) and ArcGIS software. For this, we identified the best dataset based on its highest overall accuracy, and kappa index; then we performed an analysis of variance (ANOVA) to assess the differences in accuracies among the datasets, finally, we obtained the LULC and fragmentation maps and analyzed them. We generated 31 datasets resulting from the combination of spectral bands, indices of vegetation, water, soil and clusters. Our analysis revealed that dataset 19, incorporating spectral bands along with water and soil indices, emerged as the optimal choice. Regarding the number of trees utilized in classification, we determined that using between 10 and 400 decision trees in Random Forest classification doesn't significantly affect overall accuracy or the Kappa index, but we observed a slight cumulative increase in accuracy metrics when using 100 decision trees. Additionally, between 1989 and 2023, the categories Artificial surfaces, Agricultural areas, and Scrub/ Herbaceous vegetation exhibit a positive rate of change, while the categories Forest and Open spaces with little or no vegetation display a decreasing trend. Consequently, the areas of patches and perforated have expanded in terms of area units, contributing to a reduction in forested areas (Core 3) due to fragmentation. As a result, forested areas smaller than 500 acres (Core 1 and 2) have increased. Finally, our research provides a methodological framework for image classification and assessment of landscape change and fragmentation, crucial information for decision makers in a current agricultural zone of northwestern Peru. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-30T18:26:13Z |
| dc.date.available.none.fl_str_mv |
2024-09-30T18:26:13Z |
| dc.date.issued.fl_str_mv |
2024-07-28 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Gómez-Fernández, D.; Salas-López, R.; Zabaleta-Santisteban, J.A.; Medina-Medina, A.J.; Goñas-Goñas, M.; Silva-López, J.O.; Oliva-Cruz, M.; & Rojas-Briceño, N.B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82(2024), 102738. doi: 10.1016/j.ecoinf.2024.102738 |
| dc.identifier.issn.none.fl_str_mv |
1878-0512 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2577 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.ecoinf.2024.102738 |
| identifier_str_mv |
Gómez-Fernández, D.; Salas-López, R.; Zabaleta-Santisteban, J.A.; Medina-Medina, A.J.; Goñas-Goñas, M.; Silva-López, J.O.; Oliva-Cruz, M.; & Rojas-Briceño, N.B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82(2024), 102738. doi: 10.1016/j.ecoinf.2024.102738 1878-0512 |
| url |
https://hdl.handle.net/20.500.12955/2577 https://doi.org/10.1016/j.ecoinf.2024.102738 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:1878-0512 |
| dc.relation.ispartofseries.es_PE.fl_str_mv |
Ecological Informatics |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Elsevier |
| dc.publisher.country.es_PE.fl_str_mv |
NL |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/31418ae9-fa8c-449c-ad8c-87c947e674b0/download https://repositorio.inia.gob.pe/bitstreams/a4d834fe-50ac-4368-94ad-6c770d671843/download https://repositorio.inia.gob.pe/bitstreams/350ee26c-4ac4-4df6-99ff-e847d7cd8d46/download https://repositorio.inia.gob.pe/bitstreams/a829f28d-2387-4d7d-93df-7ae2cafa3b33/download |
| bitstream.checksum.fl_str_mv |
33c22dd600b7eac0c0ef8da2388c715a 8a4605be74aa9ea9d79846c1fba20a33 1987ef6667dc3fda03ed245880f0b25e cc6fff08e7ec5e3da325e765cc395f0e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331734491430912 |
| spelling |
Gómez Fernández, DarwinSalas López, RolandoZabaleta Santisteban, Jhon AntonyMedina Medina, Angel J.Goñas Goñas, MalluriSilva López, Jhonsy O.Oliva Cruz, ManuelRojas Briceño, Nilton B.2024-09-30T18:26:13Z2024-09-30T18:26:13Z2024-07-28Gómez-Fernández, D.; Salas-López, R.; Zabaleta-Santisteban, J.A.; Medina-Medina, A.J.; Goñas-Goñas, M.; Silva-López, J.O.; Oliva-Cruz, M.; & Rojas-Briceño, N.B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82(2024), 102738. doi: 10.1016/j.ecoinf.2024.1027381878-0512https://hdl.handle.net/20.500.12955/2577https://doi.org/10.1016/j.ecoinf.2024.102738Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal combination significantly affects the accuracy and reliability of the final results. This research aimed to analyze landscape change and fragmentation in northwestern Peru. We utilized accurate land cover and land use (LULC) maps derived from Landsat imagery using Google Earth Engine (GEE) and ArcGIS software. For this, we identified the best dataset based on its highest overall accuracy, and kappa index; then we performed an analysis of variance (ANOVA) to assess the differences in accuracies among the datasets, finally, we obtained the LULC and fragmentation maps and analyzed them. We generated 31 datasets resulting from the combination of spectral bands, indices of vegetation, water, soil and clusters. Our analysis revealed that dataset 19, incorporating spectral bands along with water and soil indices, emerged as the optimal choice. Regarding the number of trees utilized in classification, we determined that using between 10 and 400 decision trees in Random Forest classification doesn't significantly affect overall accuracy or the Kappa index, but we observed a slight cumulative increase in accuracy metrics when using 100 decision trees. Additionally, between 1989 and 2023, the categories Artificial surfaces, Agricultural areas, and Scrub/ Herbaceous vegetation exhibit a positive rate of change, while the categories Forest and Open spaces with little or no vegetation display a decreasing trend. Consequently, the areas of patches and perforated have expanded in terms of area units, contributing to a reduction in forested areas (Core 3) due to fragmentation. As a result, forested areas smaller than 500 acres (Core 1 and 2) have increased. Finally, our research provides a methodological framework for image classification and assessment of landscape change and fragmentation, crucial information for decision makers in a current agricultural zone of northwestern Peru.application/pdfengElsevierNLurn:issn:1878-0512Ecological Informaticsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAFragmentationLULCChangesClassificationRandom ForestAmazonForesthttps://purl.org/pe-repo/ocde/ford#1.06.13Habitat fragmentationFragmentacion de los hábitatsLand useUtilización de la tierraLand coverCobertura de suelosMachine learningAprendizaje automáticoAmazoniaForest fragmentationFragmentación de los bosquesLandsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentationinfo:eu-repo/semantics/articleORIGINALGomez_et-al_2024_GIS_landscape_change.pdfGomez_et-al_2024_GIS_landscape_change.pdfapplication/pdf19754299https://repositorio.inia.gob.pe/bitstreams/31418ae9-fa8c-449c-ad8c-87c947e674b0/download33c22dd600b7eac0c0ef8da2388c715aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/a4d834fe-50ac-4368-94ad-6c770d671843/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGomez_et-al_2024_GIS_landscape_change.pdf.txtGomez_et-al_2024_GIS_landscape_change.pdf.txtExtracted texttext/plain72740https://repositorio.inia.gob.pe/bitstreams/350ee26c-4ac4-4df6-99ff-e847d7cd8d46/download1987ef6667dc3fda03ed245880f0b25eMD53THUMBNAILGomez_et-al_2024_GIS_landscape_change.pdf.jpgGomez_et-al_2024_GIS_landscape_change.pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/a829f28d-2387-4d7d-93df-7ae2cafa3b33/downloadcc6fff08e7ec5e3da325e765cc395f0eMD5420.500.12955/2577oai:repositorio.inia.gob.pe:20.500.12955/25772024-11-28 23:19:15.33https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936319 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).