Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation

Descripción del Articulo

Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal c...

Descripción completa

Detalles Bibliográficos
Autores: Gómez Fernández, Darwin, Salas López, Rolando, Zabaleta Santisteban, Jhon Antony, Medina Medina, Angel J., Goñas Goñas, Malluri, Silva López, Jhonsy O., Oliva Cruz, Manuel, Rojas Briceño, Nilton B.
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2577
Enlace del recurso:https://hdl.handle.net/20.500.12955/2577
https://doi.org/10.1016/j.ecoinf.2024.102738
Nivel de acceso:acceso abierto
Materia:Fragmentation
LULC
Changes
Classification
Random Forest
Amazon
Forest
https://purl.org/pe-repo/ocde/ford#1.06.13
Habitat fragmentation
Fragmentacion de los hábitats
Land use
Utilización de la tierra
Land cover
Cobertura de suelos
Machine learning
Aprendizaje automático
Amazonia
Forest fragmentation
Fragmentación de los bosques
id INIA_1be24dcd7dcbff54cd2c3322682468cf
oai_identifier_str oai:null:20.500.12955/2577
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
title Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
spellingShingle Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
Gómez Fernández, Darwin
Fragmentation
LULC
Changes
Classification
Random Forest
Amazon
Forest
https://purl.org/pe-repo/ocde/ford#1.06.13
Habitat fragmentation
Fragmentacion de los hábitats
Land use
Utilización de la tierra
Land cover
Cobertura de suelos
Machine learning
Aprendizaje automático
Amazonia
Forest fragmentation
Fragmentación de los bosques
title_short Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
title_full Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
title_fullStr Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
title_full_unstemmed Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
title_sort Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation
author Gómez Fernández, Darwin
author_facet Gómez Fernández, Darwin
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Medina Medina, Angel J.
Goñas Goñas, Malluri
Silva López, Jhonsy O.
Oliva Cruz, Manuel
Rojas Briceño, Nilton B.
author_role author
author2 Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Medina Medina, Angel J.
Goñas Goñas, Malluri
Silva López, Jhonsy O.
Oliva Cruz, Manuel
Rojas Briceño, Nilton B.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gómez Fernández, Darwin
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Medina Medina, Angel J.
Goñas Goñas, Malluri
Silva López, Jhonsy O.
Oliva Cruz, Manuel
Rojas Briceño, Nilton B.
dc.subject.es_PE.fl_str_mv Fragmentation
LULC
Changes
Classification
Random Forest
Amazon
Forest
topic Fragmentation
LULC
Changes
Classification
Random Forest
Amazon
Forest
https://purl.org/pe-repo/ocde/ford#1.06.13
Habitat fragmentation
Fragmentacion de los hábitats
Land use
Utilización de la tierra
Land cover
Cobertura de suelos
Machine learning
Aprendizaje automático
Amazonia
Forest fragmentation
Fragmentación de los bosques
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.06.13
dc.subject.agrovoc.es_PE.fl_str_mv Habitat fragmentation
Fragmentacion de los hábitats
Land use
Utilización de la tierra
Land cover
Cobertura de suelos
Machine learning
Aprendizaje automático
Amazonia
Forest fragmentation
Fragmentación de los bosques
description Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal combination significantly affects the accuracy and reliability of the final results. This research aimed to analyze landscape change and fragmentation in northwestern Peru. We utilized accurate land cover and land use (LULC) maps derived from Landsat imagery using Google Earth Engine (GEE) and ArcGIS software. For this, we identified the best dataset based on its highest overall accuracy, and kappa index; then we performed an analysis of variance (ANOVA) to assess the differences in accuracies among the datasets, finally, we obtained the LULC and fragmentation maps and analyzed them. We generated 31 datasets resulting from the combination of spectral bands, indices of vegetation, water, soil and clusters. Our analysis revealed that dataset 19, incorporating spectral bands along with water and soil indices, emerged as the optimal choice. Regarding the number of trees utilized in classification, we determined that using between 10 and 400 decision trees in Random Forest classification doesn't significantly affect overall accuracy or the Kappa index, but we observed a slight cumulative increase in accuracy metrics when using 100 decision trees. Additionally, between 1989 and 2023, the categories Artificial surfaces, Agricultural areas, and Scrub/ Herbaceous vegetation exhibit a positive rate of change, while the categories Forest and Open spaces with little or no vegetation display a decreasing trend. Consequently, the areas of patches and perforated have expanded in terms of area units, contributing to a reduction in forested areas (Core 3) due to fragmentation. As a result, forested areas smaller than 500 acres (Core 1 and 2) have increased. Finally, our research provides a methodological framework for image classification and assessment of landscape change and fragmentation, crucial information for decision makers in a current agricultural zone of northwestern Peru.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-30T18:26:13Z
dc.date.available.none.fl_str_mv 2024-09-30T18:26:13Z
dc.date.issued.fl_str_mv 2024-07-28
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Gómez-Fernández, D.; Salas-López, R.; Zabaleta-Santisteban, J.A.; Medina-Medina, A.J.; Goñas-Goñas, M.; Silva-López, J.O.; Oliva-Cruz, M.; & Rojas-Briceño, N.B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82(2024), 102738. doi: 10.1016/j.ecoinf.2024.102738
dc.identifier.issn.none.fl_str_mv 1878-0512
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2577
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ecoinf.2024.102738
identifier_str_mv Gómez-Fernández, D.; Salas-López, R.; Zabaleta-Santisteban, J.A.; Medina-Medina, A.J.; Goñas-Goñas, M.; Silva-López, J.O.; Oliva-Cruz, M.; & Rojas-Briceño, N.B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82(2024), 102738. doi: 10.1016/j.ecoinf.2024.102738
1878-0512
url https://hdl.handle.net/20.500.12955/2577
https://doi.org/10.1016/j.ecoinf.2024.102738
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:1878-0512
dc.relation.ispartofseries.es_PE.fl_str_mv Ecological Informatics
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv NL
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/31418ae9-fa8c-449c-ad8c-87c947e674b0/download
https://repositorio.inia.gob.pe/bitstreams/a4d834fe-50ac-4368-94ad-6c770d671843/download
https://repositorio.inia.gob.pe/bitstreams/350ee26c-4ac4-4df6-99ff-e847d7cd8d46/download
https://repositorio.inia.gob.pe/bitstreams/a829f28d-2387-4d7d-93df-7ae2cafa3b33/download
bitstream.checksum.fl_str_mv 33c22dd600b7eac0c0ef8da2388c715a
8a4605be74aa9ea9d79846c1fba20a33
1987ef6667dc3fda03ed245880f0b25e
cc6fff08e7ec5e3da325e765cc395f0e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331734491430912
spelling Gómez Fernández, DarwinSalas López, RolandoZabaleta Santisteban, Jhon AntonyMedina Medina, Angel J.Goñas Goñas, MalluriSilva López, Jhonsy O.Oliva Cruz, ManuelRojas Briceño, Nilton B.2024-09-30T18:26:13Z2024-09-30T18:26:13Z2024-07-28Gómez-Fernández, D.; Salas-López, R.; Zabaleta-Santisteban, J.A.; Medina-Medina, A.J.; Goñas-Goñas, M.; Silva-López, J.O.; Oliva-Cruz, M.; & Rojas-Briceño, N.B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82(2024), 102738. doi: 10.1016/j.ecoinf.2024.1027381878-0512https://hdl.handle.net/20.500.12955/2577https://doi.org/10.1016/j.ecoinf.2024.102738Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal combination significantly affects the accuracy and reliability of the final results. This research aimed to analyze landscape change and fragmentation in northwestern Peru. We utilized accurate land cover and land use (LULC) maps derived from Landsat imagery using Google Earth Engine (GEE) and ArcGIS software. For this, we identified the best dataset based on its highest overall accuracy, and kappa index; then we performed an analysis of variance (ANOVA) to assess the differences in accuracies among the datasets, finally, we obtained the LULC and fragmentation maps and analyzed them. We generated 31 datasets resulting from the combination of spectral bands, indices of vegetation, water, soil and clusters. Our analysis revealed that dataset 19, incorporating spectral bands along with water and soil indices, emerged as the optimal choice. Regarding the number of trees utilized in classification, we determined that using between 10 and 400 decision trees in Random Forest classification doesn't significantly affect overall accuracy or the Kappa index, but we observed a slight cumulative increase in accuracy metrics when using 100 decision trees. Additionally, between 1989 and 2023, the categories Artificial surfaces, Agricultural areas, and Scrub/ Herbaceous vegetation exhibit a positive rate of change, while the categories Forest and Open spaces with little or no vegetation display a decreasing trend. Consequently, the areas of patches and perforated have expanded in terms of area units, contributing to a reduction in forested areas (Core 3) due to fragmentation. As a result, forested areas smaller than 500 acres (Core 1 and 2) have increased. Finally, our research provides a methodological framework for image classification and assessment of landscape change and fragmentation, crucial information for decision makers in a current agricultural zone of northwestern Peru.application/pdfengElsevierNLurn:issn:1878-0512Ecological Informaticsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAFragmentationLULCChangesClassificationRandom ForestAmazonForesthttps://purl.org/pe-repo/ocde/ford#1.06.13Habitat fragmentationFragmentacion de los hábitatsLand useUtilización de la tierraLand coverCobertura de suelosMachine learningAprendizaje automáticoAmazoniaForest fragmentationFragmentación de los bosquesLandsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentationinfo:eu-repo/semantics/articleORIGINALGomez_et-al_2024_GIS_landscape_change.pdfGomez_et-al_2024_GIS_landscape_change.pdfapplication/pdf19754299https://repositorio.inia.gob.pe/bitstreams/31418ae9-fa8c-449c-ad8c-87c947e674b0/download33c22dd600b7eac0c0ef8da2388c715aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/a4d834fe-50ac-4368-94ad-6c770d671843/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGomez_et-al_2024_GIS_landscape_change.pdf.txtGomez_et-al_2024_GIS_landscape_change.pdf.txtExtracted texttext/plain72740https://repositorio.inia.gob.pe/bitstreams/350ee26c-4ac4-4df6-99ff-e847d7cd8d46/download1987ef6667dc3fda03ed245880f0b25eMD53THUMBNAILGomez_et-al_2024_GIS_landscape_change.pdf.jpgGomez_et-al_2024_GIS_landscape_change.pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/a829f28d-2387-4d7d-93df-7ae2cafa3b33/downloadcc6fff08e7ec5e3da325e765cc395f0eMD5420.500.12955/2577oai:repositorio.inia.gob.pe:20.500.12955/25772024-11-28 23:19:15.33https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936319
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).