Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)

Descripción del Articulo

We used a large set of satellite- (visible, infrared, and radar images from Planetscope, MODIS, VIIRS, Sentinel2, Landsat 8, and Sentinel 1) and ground-based data (optical images, SO2 flux, shallow seismicity) to describe and characterize the activity of the Sabancaya volcano during the unrest and e...

Descripción completa

Detalles Bibliográficos
Autores: Coppola, Diego, Valade, Sébastien A., Masías Alvarez, Pablo Jorge, Laiolo, Marco, Massimetti, Francesco, Campus, Adele, Aguilar Contreras, Rigoberto, Anccasi Figueroa, Rosa María, Apaza Choquehuayta, Fredy Erlingtton, Ccallata Pacsi, Beto, Cigolini, Corrado, Cruz Mamani, Luis Fernando, Finizola, Anthony, Gonzales Zúñiga, Katherine, Macedo Sánchez, Orlando, Miranda Cruz, Rafael, Ortega Gonzáles, Mayra Alexandra, Paxi Zamalloa, Rosario, Taipe Maquerhua, Edu Luis, Valdivia Humerez, David
Formato: artículo
Fecha de Publicación:2022
Institución:Instituto Geológico, Minero y Metalúrgico
Repositorio:INGEMMET-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ingemmet.gob.pe:20.500.12544/3842
Enlace del recurso:https://hdl.handle.net/20.500.12544/3842
https://doi.org/10.1007/s00445-022-01523-1
Nivel de acceso:acceso abierto
Materia:Volcanes
Magmatismo
Erupciones volcánicas
Energía geotérmica
Actividad eruptiva
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.06
http://purl.org/pe-repo/ocde/ford#1.05.07
id INGEMMET_985ee2bd3edcb22757669471b681a9f2
oai_identifier_str oai:repositorio.ingemmet.gob.pe:20.500.12544/3842
network_acronym_str INGEMMET
network_name_str INGEMMET-Institucional
repository_id_str 2991
dc.title.es_PE.fl_str_mv Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
title Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
spellingShingle Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
Coppola, Diego
Volcanes
Magmatismo
Erupciones volcánicas
Energía geotérmica
Actividad eruptiva
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.06
http://purl.org/pe-repo/ocde/ford#1.05.07
title_short Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
title_full Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
title_fullStr Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
title_full_unstemmed Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
title_sort Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)
author Coppola, Diego
author_facet Coppola, Diego
Valade, Sébastien A.
Masías Alvarez, Pablo Jorge
Laiolo, Marco
Massimetti, Francesco
Campus, Adele
Aguilar Contreras, Rigoberto
Anccasi Figueroa, Rosa María
Apaza Choquehuayta, Fredy Erlingtton
Ccallata Pacsi, Beto
Cigolini, Corrado
Cruz Mamani, Luis Fernando
Finizola, Anthony
Gonzales Zúñiga, Katherine
Macedo Sánchez, Orlando
Miranda Cruz, Rafael
Ortega Gonzáles, Mayra Alexandra
Paxi Zamalloa, Rosario
Taipe Maquerhua, Edu Luis
Valdivia Humerez, David
author_role author
author2 Valade, Sébastien A.
Masías Alvarez, Pablo Jorge
Laiolo, Marco
Massimetti, Francesco
Campus, Adele
Aguilar Contreras, Rigoberto
Anccasi Figueroa, Rosa María
Apaza Choquehuayta, Fredy Erlingtton
Ccallata Pacsi, Beto
Cigolini, Corrado
Cruz Mamani, Luis Fernando
Finizola, Anthony
Gonzales Zúñiga, Katherine
Macedo Sánchez, Orlando
Miranda Cruz, Rafael
Ortega Gonzáles, Mayra Alexandra
Paxi Zamalloa, Rosario
Taipe Maquerhua, Edu Luis
Valdivia Humerez, David
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Coppola, Diego
Valade, Sébastien A.
Masías Alvarez, Pablo Jorge
Laiolo, Marco
Massimetti, Francesco
Campus, Adele
Aguilar Contreras, Rigoberto
Anccasi Figueroa, Rosa María
Apaza Choquehuayta, Fredy Erlingtton
Ccallata Pacsi, Beto
Cigolini, Corrado
Cruz Mamani, Luis Fernando
Finizola, Anthony
Gonzales Zúñiga, Katherine
Macedo Sánchez, Orlando
Miranda Cruz, Rafael
Ortega Gonzáles, Mayra Alexandra
Paxi Zamalloa, Rosario
Taipe Maquerhua, Edu Luis
Valdivia Humerez, David
dc.subject.es_PE.fl_str_mv Volcanes
Magmatismo
Erupciones volcánicas
Energía geotérmica
Actividad eruptiva
topic Volcanes
Magmatismo
Erupciones volcánicas
Energía geotérmica
Actividad eruptiva
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.06
http://purl.org/pe-repo/ocde/ford#1.05.07
dc.subject.ocde.es_PE.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.06
http://purl.org/pe-repo/ocde/ford#1.05.07
description We used a large set of satellite- (visible, infrared, and radar images from Planetscope, MODIS, VIIRS, Sentinel2, Landsat 8, and Sentinel 1) and ground-based data (optical images, SO2 flux, shallow seismicity) to describe and characterize the activity of the Sabancaya volcano during the unrest and eruption phases that occurred between 2012 and 2020. The unrest phase (2012–2016) was characterized by increasing gas and thermal flux, sourced by a convective magma column rising along with the remnants of a buried plug still permeable to fluid flow. Conversely, a new conduit, adjacent to the previous one, fed the eruptive phase (2016–2020) which was instead characterized by a discontinuous extrusive activity, with phases of dome growth (at rates from 0.04 to 0.75 m3 s−1) and collapse. The extrusive activity was accompanied by fluctuating thermal anomalies (0.5–25 MW), by irregular SO2 degassing (700–7000 tons day−1), and by variable explosive activity (4–100 events d−1) producing repeated vulcanian ash plumes (500–5000 m above the crater). Magma budget calculation during the eruptive phase indicates a large excess of degassing, with the volume of degassed magma (0.25–1.28 km3) much higher than the volume of erupted magma (< 0.01 km3). Similarly, the thermal energy radiated by the eruption was much higher than that sourced by the dome itself, an unbalance that, by analogy with the degassing, we define as “excess thermal radiation”. Both of these unbalances are consistent with the presence of shallow magma convection that fed the extrusive and explosive activity of the Sabancaya dome.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-27T16:16:08Z
dc.date.available.none.fl_str_mv 2022-04-27T16:16:08Z
dc.date.issued.fl_str_mv 2022-02
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.citation.es_PE.fl_str_mv Coppola, D.; Valade, S.; Masias, P.; Laiolo, M.; Massimetti, F.; Campus, A.; Aguilar, R.; Anccasi, R.; Apaza, F.; Ccallata, B.; Cigolini, C.; Cruz, L.; Finizola, A.; Gonzales, K.; Macedo O.; Miranda, R.; Ortega, M.; Paxi, R.; Taipe, E. & Valdivia, D. (2022). Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020). Bulletin of Volcanology, 84(2), art. 16. https://doi.org/10.1007/s00445-022-01523-1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12544/3842
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00445-022-01523-1
dc.identifier.journal.es_PE.fl_str_mv Bulletin of Volcanology
dc.identifier.bibliographicCitation.es_PE.fl_str_mv Bulletin of Volcanology, v. 84, n. 2, art. 16, 2022
identifier_str_mv Coppola, D.; Valade, S.; Masias, P.; Laiolo, M.; Massimetti, F.; Campus, A.; Aguilar, R.; Anccasi, R.; Apaza, F.; Ccallata, B.; Cigolini, C.; Cruz, L.; Finizola, A.; Gonzales, K.; Macedo O.; Miranda, R.; Ortega, M.; Paxi, R.; Taipe, E. & Valdivia, D. (2022). Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020). Bulletin of Volcanology, 84(2), art. 16. https://doi.org/10.1007/s00445-022-01523-1
Bulletin of Volcanology
Bulletin of Volcanology, v. 84, n. 2, art. 16, 2022
url https://hdl.handle.net/20.500.12544/3842
https://doi.org/10.1007/s00445-022-01523-1
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1432-0819
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.format.extent.es_PE.fl_str_mv 19 páginas
dc.coverage.spatial.es_PE.fl_str_mv Volcán Sabancaya
Arequipa
Perú
dc.publisher.es_PE.fl_str_mv Springer Berlin Heidelberg
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Repositorio Institucional INGEMMET
Instituto Geológico, Minero y Metalúrgico – INGEMMET
dc.source.none.fl_str_mv reponame:INGEMMET-Institucional
instname:Instituto Geológico, Minero y Metalúrgico
instacron:INGEMMET
instname_str Instituto Geológico, Minero y Metalúrgico
instacron_str INGEMMET
institution INGEMMET
reponame_str INGEMMET-Institucional
collection INGEMMET-Institucional
bitstream.url.fl_str_mv https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/3/Coppola-Shallow_magma_convection_evidence.pdf.txt
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/4/Coppola-Shallow_magma_convection_evidence.pdf.jpg
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/1/Coppola-Shallow_magma_convection_evidence.pdf
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/2/license.txt
bitstream.checksum.fl_str_mv 7cfaa783f873bb60699bc4521112d551
c11e6bb8e5d220197b365cc95972f342
bbf5cc647b8d6835c2fdeb754d20e41d
ecccc10c448afdeacc04912e07a3ed65
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INGEMMET
repository.mail.fl_str_mv repositorio@ingemmet.gob.pe
_version_ 1815350329702612992
spelling Coppola, DiegoValade, Sébastien A.Masías Alvarez, Pablo JorgeLaiolo, MarcoMassimetti, FrancescoCampus, AdeleAguilar Contreras, RigobertoAnccasi Figueroa, Rosa MaríaApaza Choquehuayta, Fredy ErlingttonCcallata Pacsi, BetoCigolini, CorradoCruz Mamani, Luis FernandoFinizola, AnthonyGonzales Zúñiga, KatherineMacedo Sánchez, OrlandoMiranda Cruz, RafaelOrtega Gonzáles, Mayra AlexandraPaxi Zamalloa, RosarioTaipe Maquerhua, Edu LuisValdivia Humerez, DavidVolcán SabancayaArequipaPerú2022-04-27T16:16:08Z2022-04-27T16:16:08Z2022-02Coppola, D.; Valade, S.; Masias, P.; Laiolo, M.; Massimetti, F.; Campus, A.; Aguilar, R.; Anccasi, R.; Apaza, F.; Ccallata, B.; Cigolini, C.; Cruz, L.; Finizola, A.; Gonzales, K.; Macedo O.; Miranda, R.; Ortega, M.; Paxi, R.; Taipe, E. & Valdivia, D. (2022). Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020). Bulletin of Volcanology, 84(2), art. 16. https://doi.org/10.1007/s00445-022-01523-1https://hdl.handle.net/20.500.12544/3842https://doi.org/10.1007/s00445-022-01523-1Bulletin of VolcanologyBulletin of Volcanology, v. 84, n. 2, art. 16, 2022We used a large set of satellite- (visible, infrared, and radar images from Planetscope, MODIS, VIIRS, Sentinel2, Landsat 8, and Sentinel 1) and ground-based data (optical images, SO2 flux, shallow seismicity) to describe and characterize the activity of the Sabancaya volcano during the unrest and eruption phases that occurred between 2012 and 2020. The unrest phase (2012–2016) was characterized by increasing gas and thermal flux, sourced by a convective magma column rising along with the remnants of a buried plug still permeable to fluid flow. Conversely, a new conduit, adjacent to the previous one, fed the eruptive phase (2016–2020) which was instead characterized by a discontinuous extrusive activity, with phases of dome growth (at rates from 0.04 to 0.75 m3 s−1) and collapse. The extrusive activity was accompanied by fluctuating thermal anomalies (0.5–25 MW), by irregular SO2 degassing (700–7000 tons day−1), and by variable explosive activity (4–100 events d−1) producing repeated vulcanian ash plumes (500–5000 m above the crater). Magma budget calculation during the eruptive phase indicates a large excess of degassing, with the volume of degassed magma (0.25–1.28 km3) much higher than the volume of erupted magma (< 0.01 km3). Similarly, the thermal energy radiated by the eruption was much higher than that sourced by the dome itself, an unbalance that, by analogy with the degassing, we define as “excess thermal radiation”. Both of these unbalances are consistent with the presence of shallow magma convection that fed the extrusive and explosive activity of the Sabancaya dome.Peer reviewedapplication/pdf19 páginasengSpringer Berlin HeidelbergUSurn:issn:1432-0819info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional INGEMMETInstituto Geológico, Minero y Metalúrgico – INGEMMETreponame:INGEMMET-Institucionalinstname:Instituto Geológico, Minero y Metalúrgicoinstacron:INGEMMETVolcanesMagmatismoErupciones volcánicasEnergía geotérmicaActividad eruptivahttp://purl.org/pe-repo/ocde/ford#1.05.00http://purl.org/pe-repo/ocde/ford#1.05.06http://purl.org/pe-repo/ocde/ford#1.05.07Shallow magma convection evidenced by excess degassing and thermal radiation during the dome-forming Sabancaya eruption (2012–2020)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTEXTCoppola-Shallow_magma_convection_evidence.pdf.txtCoppola-Shallow_magma_convection_evidence.pdf.txtExtracted texttext/plain87383https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/3/Coppola-Shallow_magma_convection_evidence.pdf.txt7cfaa783f873bb60699bc4521112d551MD53THUMBNAILCoppola-Shallow_magma_convection_evidence.pdf.jpgCoppola-Shallow_magma_convection_evidence.pdf.jpgGenerated Thumbnailimage/jpeg23367https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/4/Coppola-Shallow_magma_convection_evidence.pdf.jpgc11e6bb8e5d220197b365cc95972f342MD54ORIGINALCoppola-Shallow_magma_convection_evidence.pdfCoppola-Shallow_magma_convection_evidence.pdfArtículo científicoapplication/pdf4929578https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/1/Coppola-Shallow_magma_convection_evidence.pdfbbf5cc647b8d6835c2fdeb754d20e41dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81567https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3842/2/license.txtecccc10c448afdeacc04912e07a3ed65MD5220.500.12544/3842oai:repositorio.ingemmet.gob.pe:20.500.12544/38422022-05-25 09:41:00.82Repositorio Institucional INGEMMETrepositorio@ingemmet.gob.peTGljZW5jaWEgZGUgVXNvCgpFbCBJbnN0aXR1dG8gR2VvbMOzZ2ljbywgTWluZXJvIHkgTWV0YWzDunJnaWNvIOKAkyBJTkdFTU1FVCwgZGlmdW5kZSBtZWRpYW50ZSBzdSByZXBvc2l0b3JpbyBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSB5IHTDqWNuaWNhIHByb2R1Y2lkYSBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIGluc3RpdHVjacOzbi4gRWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIGRpZ2l0YWxlcyBlcyBkZSBhY2Nlc28gYWJpZXJ0byBwYXJhIHRvZGEgcGVyc29uYSBpbnRlcmVzYWRhLgoKU2UgYWNlcHRhIGxhIGRpZnVzacOzbiBww7pibGljYSBkZSBsYSBvYnJhLCBzdSBjb3BpYSB5IHJlcHJvZHVjacOzbi4gUGFyYSBlbGxvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKLSBFbCBuZWNlc2FyaW8gcmVjb25vY2ltaWVudG8gZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSwgaWRlbnRpZmljYW5kbyBvcG9ydHVuYSB5IGNvcnJlY3RhbWVudGUgYSBsYSBwZXJzb25hIHF1ZSBwb3NlYSBsb3MgZGVyZWNob3MgZGUgYXV0b3IuCi0gTm8gZXN0w6EgcGVybWl0aWRvIGVsIHVzbyBpbmRlYmlkbyBkZSBsYSBvYnJhIGNvbiBmaW5lcyBkZSBsdWNybyBvIGN1YWxxdWllciB0aXBvIGRlIGFjdGl2aWRhZCBxdWUgcHJvZHV6Y2EgZ2FuYW5jaWFzIGEgbGFzIHBlcnNvbmFzIHF1ZSBsbyBkaWZ1bmRlbiBzaW4gZWwgY29uc2VudGltaWVudG8gZGVsIGF1dG9yLgotIExvcyB0cmFiYWpvcyBxdWUgc2UgcHJvZHV6Y2FuIGEgcGFydGlyIGRlIGxhIG9icmEgZGViZW4gcG9zZWVyIGxhIGNpdGFjacOzbiBwZXJ0aW5lbnRlIGRlIGFjdWVyZG8gYSBjdWFscXVpZXJhIGRlIGxvcyBlc3RpbG9zIChBUEEsIElTTywgVmFuY3V2ZXIsIGV0YykgZWxlZ2lkb3MgcGFyYSBsYSByZWRhY2Npw7NuIGRlIGxhcyByZWZlcmVuY2lhcyBiaWJsaW9ncsOhZmljYXMuIENhc28gY29udHJhcmlvIHNlIGluY3Vycmlyw6EgZW4gbGEgZmlndXJhIGp1csOtZGljYSBkZWwgcGxhZ2lvLgoKTG9zIGRlcmVjaG9zIG1vcmFsZXMgZGVsIGF1dG9yIG5vIHNvbiBhZmVjdGFkb3MgcG9yIGxhIHByZXNlbnRlIGxpY2VuY2lhIGRlIHVzby4KCkRlcmVjaG9zIGRlIGF1dG9yCgpMb3MgZGVyZWNob3MgZGUgYXV0b3Igc2UgZW5jdWVudHJhbiBwcm90ZWdpZG9zIHBvciBsYSBsZWdpc2xhY2nDs24gcGVydWFuYTogTGV5IHNvYnJlIGVsIERlcmVjaG8gZGUgQXV0b3IgcHJvbXVsZ2FkbyBlbiAxOTk2IChELkwuIE7CsCA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKweSAxODnCsCBkZWwgZGVjcmV0byBsZWdpc2xhdGl2byBOwrAgODIyLCBMZXkgc29icmUgRGVyZWNob3MgZGUgQXV0b3IgcHJvbXVsZ2FkYSBlbiAyMDA1IChMZXkgTsKwIDI4NTE3KSwgRGVjcmV0byBMZWdpc2xhdGl2byBxdWUgYXBydWViYSBsYSBtb2RpZmljYWNpw7NuIGRlbCBEZWNyZXRvIExlZ2lzbGF0aXZvIE7CsCA4MjIsIExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMjAwOCAoRC5MLiBOwrAgMTA3NikuCg==
score 13.876703
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).