Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)

Descripción del Articulo

Earthquake is one of the dominant triggering factors of landslides. Given the wide areas covered by mega earthquake-triggered landslides, their inventory requires development of automatic or semi-automatic methods applied to satellite imagery. A detection method is here proposed for this purpose, to...

Descripción completa

Detalles Bibliográficos
Autores: Lacroix, Pascal, Zavala Carrión, Bilberto Luis, Berthier, Etienne, Audin, Laurence
Formato: artículo
Fecha de Publicación:2013
Institución:Instituto Geológico, Minero y Metalúrgico
Repositorio:INGEMMET-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ingemmet.gob.pe:20.500.12544/703
Enlace del recurso:https://hdl.handle.net/20.500.12544/703
https://doi.org/10.3390/rs5062590
Nivel de acceso:acceso abierto
Materia:Deslizamientos
Imágenes de satélite
Sensores remotos
SPOT5
Terremotos
Inventario
id INGEMMET_4be23f4e1996094a7a705b0c28c4c351
oai_identifier_str oai:repositorio.ingemmet.gob.pe:20.500.12544/703
network_acronym_str INGEMMET
network_name_str INGEMMET-Institucional
repository_id_str 2991
dc.title.es_PE.fl_str_mv Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
title Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
spellingShingle Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
Lacroix, Pascal
Deslizamientos
Imágenes de satélite
Sensores remotos
SPOT5
Terremotos
Inventario
title_short Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
title_full Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
title_fullStr Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
title_full_unstemmed Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
title_sort Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)
author Lacroix, Pascal
author_facet Lacroix, Pascal
Zavala Carrión, Bilberto Luis
Berthier, Etienne
Audin, Laurence
author_role author
author2 Zavala Carrión, Bilberto Luis
Berthier, Etienne
Audin, Laurence
author2_role author
author
author
dc.contributor.author.fl_str_mv Lacroix, Pascal
Zavala Carrión, Bilberto Luis
Berthier, Etienne
Audin, Laurence
dc.subject.es_PE.fl_str_mv Deslizamientos
Imágenes de satélite
Sensores remotos
SPOT5
Terremotos
Inventario
topic Deslizamientos
Imágenes de satélite
Sensores remotos
SPOT5
Terremotos
Inventario
description Earthquake is one of the dominant triggering factors of landslides. Given the wide areas covered by mega earthquake-triggered landslides, their inventory requires development of automatic or semi-automatic methods applied to satellite imagery. A detection method is here proposed for this purpose, to fit with simple datasets; SPOT5 panchromatic images of 5 m resolution coupled with a freely and globally available DEM. The method takes advantage of multi-temporal images to detect changes based on radiometric variations after precise coregistration/orthorectification. Removal of false alarms is then undertaken using shape, orientation and radiometric properties of connected pixels defining objects. 80% of the landslides and 93% of the landslide area are detected indicating small omission errors but 50% of false alarms remain. They are removed using expert based analysis of the inventory. The method is applied to realize the first comprehensive inventory of landslides triggered by the Pisco earthquake (Peru, 15/08/2007, Mw 8.0) over an area of 27,000 km2. 866 landslides larger than 100 m2 are detected covering a total area of 1.29 km2. The area/number distribution follows a power-law with an exponent of 1.63, showing a very particular regime of triggering in this arid environment compared to other areas in the world. This specific triggering can be explained by the little soil cover in the coastal and forearc regions of Peru. Analysis of this database finally shows a major control of the topography (both orientation and inclination) on the repartition of the Pisco-triggered landslides.
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2017-11-03T22:08:56Z
dc.date.available.none.fl_str_mv 2017-11-03T22:08:56Z
dc.date.issued.fl_str_mv 2013
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Lacroix, P.; Zavala, B.; Berthier, E., & Audin, L. (2013) - Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sensing, 5(6): 2590–2616. Doi: 10.3390/rs5062590
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12544/703
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/rs5062590
dc.identifier.journal.es_PE.fl_str_mv Remote Sensing
dc.identifier.bibliographicCitation.es_PE.fl_str_mv Remote Sensing, v. 5, n. 6, 2013, pp. 2590-2616
identifier_str_mv Lacroix, P.; Zavala, B.; Berthier, E., & Audin, L. (2013) - Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sensing, 5(6): 2590–2616. Doi: 10.3390/rs5062590
Remote Sensing
Remote Sensing, v. 5, n. 6, 2013, pp. 2590-2616
url https://hdl.handle.net/20.500.12544/703
https://doi.org/10.3390/rs5062590
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2072-4292
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.coverage.spatial.es_PE.fl_str_mv Ica
Pisco
Perú
dc.publisher.es_PE.fl_str_mv MDPI AG
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Repositorio Institucional INGEMMET
Instituto Geológico, Minero y Metalúrgico – INGEMMET
dc.source.none.fl_str_mv reponame:INGEMMET-Institucional
instname:Instituto Geológico, Minero y Metalúrgico
instacron:INGEMMET
instname_str Instituto Geológico, Minero y Metalúrgico
instacron_str INGEMMET
institution INGEMMET
reponame_str INGEMMET-Institucional
collection INGEMMET-Institucional
bitstream.url.fl_str_mv https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/2/license.txt
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/4/Lacroix-Supervised_method_of_landslide_inventory.pdf.jpg
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/3/Lacroix-Supervised_method_of_landslide_inventory.pdf.txt
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/5/Lacroix-Supervised_method_of_landslide_inventory.pdf
bitstream.checksum.fl_str_mv ecccc10c448afdeacc04912e07a3ed65
3bb9c29cace208fb6e0ecde6a1b53e41
8b2417a498c1086eff1e62106e2a137b
a9ce0135c80bb12f815bed58e3deaa35
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INGEMMET
repository.mail.fl_str_mv repositorio@ingemmet.gob.pe
_version_ 1815350292746600448
spelling Lacroix, PascalZavala Carrión, Bilberto LuisBerthier, EtienneAudin, LaurenceIcaPiscoPerú2017-11-03T22:08:56Z2017-11-03T22:08:56Z2013Lacroix, P.; Zavala, B.; Berthier, E., & Audin, L. (2013) - Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sensing, 5(6): 2590–2616. Doi: 10.3390/rs5062590https://hdl.handle.net/20.500.12544/703https://doi.org/10.3390/rs5062590Remote SensingRemote Sensing, v. 5, n. 6, 2013, pp. 2590-2616Earthquake is one of the dominant triggering factors of landslides. Given the wide areas covered by mega earthquake-triggered landslides, their inventory requires development of automatic or semi-automatic methods applied to satellite imagery. A detection method is here proposed for this purpose, to fit with simple datasets; SPOT5 panchromatic images of 5 m resolution coupled with a freely and globally available DEM. The method takes advantage of multi-temporal images to detect changes based on radiometric variations after precise coregistration/orthorectification. Removal of false alarms is then undertaken using shape, orientation and radiometric properties of connected pixels defining objects. 80% of the landslides and 93% of the landslide area are detected indicating small omission errors but 50% of false alarms remain. They are removed using expert based analysis of the inventory. The method is applied to realize the first comprehensive inventory of landslides triggered by the Pisco earthquake (Peru, 15/08/2007, Mw 8.0) over an area of 27,000 km2. 866 landslides larger than 100 m2 are detected covering a total area of 1.29 km2. The area/number distribution follows a power-law with an exponent of 1.63, showing a very particular regime of triggering in this arid environment compared to other areas in the world. This specific triggering can be explained by the little soil cover in the coastal and forearc regions of Peru. Analysis of this database finally shows a major control of the topography (both orientation and inclination) on the repartition of the Pisco-triggered landslides.Peer reviewedapplication/pdfengMDPI AGCHurn:issn:2072-4292info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional INGEMMETInstituto Geológico, Minero y Metalúrgico – INGEMMETreponame:INGEMMET-Institucionalinstname:Instituto Geológico, Minero y Metalúrgicoinstacron:INGEMMETDeslizamientosImágenes de satéliteSensores remotosSPOT5TerremotosInventarioSupervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0)info:eu-repo/semantics/articleGeocienciasLICENSElicense.txtlicense.txttext/plain; charset=utf-81567https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/2/license.txtecccc10c448afdeacc04912e07a3ed65MD52THUMBNAILLacroix-Supervised_method_of_landslide_inventory.pdf.jpgLacroix-Supervised_method_of_landslide_inventory.pdf.jpgGenerated Thumbnailimage/jpeg25190https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/4/Lacroix-Supervised_method_of_landslide_inventory.pdf.jpg3bb9c29cace208fb6e0ecde6a1b53e41MD54TEXTLacroix-Supervised_method_of_landslide_inventory.pdf.txtLacroix-Supervised_method_of_landslide_inventory.pdf.txtExtracted texttext/plain70167https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/3/Lacroix-Supervised_method_of_landslide_inventory.pdf.txt8b2417a498c1086eff1e62106e2a137bMD53ORIGINALLacroix-Supervised_method_of_landslide_inventory.pdfLacroix-Supervised_method_of_landslide_inventory.pdfapplication/pdf14278774https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/703/5/Lacroix-Supervised_method_of_landslide_inventory.pdfa9ce0135c80bb12f815bed58e3deaa35MD5520.500.12544/703oai:repositorio.ingemmet.gob.pe:20.500.12544/7032019-04-30 17:37:03.159Repositorio Institucional INGEMMETrepositorio@ingemmet.gob.peTGljZW5jaWEgZGUgVXNvCgpFbCBJbnN0aXR1dG8gR2VvbMOzZ2ljbywgTWluZXJvIHkgTWV0YWzDunJnaWNvIOKAkyBJTkdFTU1FVCwgZGlmdW5kZSBtZWRpYW50ZSBzdSByZXBvc2l0b3JpbyBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSB5IHTDqWNuaWNhIHByb2R1Y2lkYSBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIGluc3RpdHVjacOzbi4gRWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIGRpZ2l0YWxlcyBlcyBkZSBhY2Nlc28gYWJpZXJ0byBwYXJhIHRvZGEgcGVyc29uYSBpbnRlcmVzYWRhLgoKU2UgYWNlcHRhIGxhIGRpZnVzacOzbiBww7pibGljYSBkZSBsYSBvYnJhLCBzdSBjb3BpYSB5IHJlcHJvZHVjacOzbi4gUGFyYSBlbGxvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKLSBFbCBuZWNlc2FyaW8gcmVjb25vY2ltaWVudG8gZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSwgaWRlbnRpZmljYW5kbyBvcG9ydHVuYSB5IGNvcnJlY3RhbWVudGUgYSBsYSBwZXJzb25hIHF1ZSBwb3NlYSBsb3MgZGVyZWNob3MgZGUgYXV0b3IuCi0gTm8gZXN0w6EgcGVybWl0aWRvIGVsIHVzbyBpbmRlYmlkbyBkZSBsYSBvYnJhIGNvbiBmaW5lcyBkZSBsdWNybyBvIGN1YWxxdWllciB0aXBvIGRlIGFjdGl2aWRhZCBxdWUgcHJvZHV6Y2EgZ2FuYW5jaWFzIGEgbGFzIHBlcnNvbmFzIHF1ZSBsbyBkaWZ1bmRlbiBzaW4gZWwgY29uc2VudGltaWVudG8gZGVsIGF1dG9yLgotIExvcyB0cmFiYWpvcyBxdWUgc2UgcHJvZHV6Y2FuIGEgcGFydGlyIGRlIGxhIG9icmEgZGViZW4gcG9zZWVyIGxhIGNpdGFjacOzbiBwZXJ0aW5lbnRlIGRlIGFjdWVyZG8gYSBjdWFscXVpZXJhIGRlIGxvcyBlc3RpbG9zIChBUEEsIElTTywgVmFuY3V2ZXIsIGV0YykgZWxlZ2lkb3MgcGFyYSBsYSByZWRhY2Npw7NuIGRlIGxhcyByZWZlcmVuY2lhcyBiaWJsaW9ncsOhZmljYXMuIENhc28gY29udHJhcmlvIHNlIGluY3Vycmlyw6EgZW4gbGEgZmlndXJhIGp1csOtZGljYSBkZWwgcGxhZ2lvLgoKTG9zIGRlcmVjaG9zIG1vcmFsZXMgZGVsIGF1dG9yIG5vIHNvbiBhZmVjdGFkb3MgcG9yIGxhIHByZXNlbnRlIGxpY2VuY2lhIGRlIHVzby4KCkRlcmVjaG9zIGRlIGF1dG9yCgpMb3MgZGVyZWNob3MgZGUgYXV0b3Igc2UgZW5jdWVudHJhbiBwcm90ZWdpZG9zIHBvciBsYSBsZWdpc2xhY2nDs24gcGVydWFuYTogTGV5IHNvYnJlIGVsIERlcmVjaG8gZGUgQXV0b3IgcHJvbXVsZ2FkbyBlbiAxOTk2IChELkwuIE7CsCA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKweSAxODnCsCBkZWwgZGVjcmV0byBsZWdpc2xhdGl2byBOwrAgODIyLCBMZXkgc29icmUgRGVyZWNob3MgZGUgQXV0b3IgcHJvbXVsZ2FkYSBlbiAyMDA1IChMZXkgTsKwIDI4NTE3KSwgRGVjcmV0byBMZWdpc2xhdGl2byBxdWUgYXBydWViYSBsYSBtb2RpZmljYWNpw7NuIGRlbCBEZWNyZXRvIExlZ2lzbGF0aXZvIE7CsCA4MjIsIExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMjAwOCAoRC5MLiBOwrAgMTA3NikuCg==
score 13.940932
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).