Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer

Descripción del Articulo

Introduction: Triple-negative breast cancer (TNBC) is a heterogeneous disease associated with a poor prognosis. Delaying in time to start adjuvant chemotherapy (TTC) has been related to an increased risk of distant recurrence-free survival (DRFS). We aimed to develop a prognostic model to estimate t...

Descripción completa

Detalles Bibliográficos
Autores: Morante, Z, Ferreyra, Y, Pinto, JA, Valdivieso, N, Castañeda, C, Vidaurre, T, Valencia, G, Rioja, P, Fuentes, H, Cotrina, JM, Neciosup, S, Gomez, HL
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Enfermedades Neoplásicas
Repositorio:INEN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inen.sld.pe:inen/244
Enlace del recurso:https://repositorio.inen.sld.pe/handle/inen/244
Nivel de acceso:acceso abierto
Materia:adjuvant chemotherapy
breast cancer
prognostic factor analysis
subpopulation treatment effect pattern plot
triple negative breast cancer
https://purl.org/pe-repo/ocde/ford#3.02.21
id INEN_1b143ba4161c8e636093f4d4ae5df8e6
oai_identifier_str oai:repositorio.inen.sld.pe:inen/244
network_acronym_str INEN
network_name_str INEN-Institucional
repository_id_str .
spelling Morante, ZFerreyra, YPinto, JAValdivieso, NCastañeda, CVidaurre, TValencia, GRioja, PFuentes, HCotrina, JMNeciosup, SGomez, HL2024-11-27T17:33:41Z2024-11-27T17:33:41Z2023Introduction: Triple-negative breast cancer (TNBC) is a heterogeneous disease associated with a poor prognosis. Delaying in time to start adjuvant chemotherapy (TTC) has been related to an increased risk of distant recurrence-free survival (DRFS). We aimed to develop a prognostic model to estimate the effects of delayed TTC among TNBC risk subgroups. Materials and methods: We analyzed 687 TNBC patients who received adjuvant chemotherapy at the Instituto Nacional de Enfermedades Neoplasicas (Lima, Peru). Database was randomly divided to create a discovery set (n=344) and a validation set (n=343). Univariate and multivariate Cox regression models were performed to identify prognostic factors for DRFS. Risk stratification was implemented through two models developed based on proportional hazard ratios from significant clinicopathological characteristics. Subpopulation treatment effect pattern plot (STEPP) analysis was performed to determine the best prognostic cut-off points for stratifying TNBC subgroups according to risk scores and estimate Kaplan-Meier differences in 10-year DRFS comparing TTC (≤30 vs.>30 days). Results: In univariate analysis, patients aged ≥70 years (HR=4.65; 95% CI: 2.32-9.34; p=<0.001), those at stages pT3-T4 (HR=3.28; 95% CI: 1.57-6.83; p=0.002), and pN2-N3 (HR=3.00; 95% CI: 1.90-4.76; p=<0.001) were notably associated with higher risk. STEPP analysis defined three risk subgroups for each model. Model N°01 categorized patients into low (score: 0–31), intermediate (score:32–64), and high-risk (score: 65–100) cohorts; meanwhile, Model N°02: low (score: 0–26), intermediate (score: 27–55), and high (score: 56–100). Kaplan-Meier plots showed that in the discovery set, patients with TTC>30 days experienced a 17.5% decrease in 10-year DRFS rate (95%CI=6.7-28.3), and the impact was more remarkable in patients who belong to the high-risk subgroup (53.3% decrease in 10 years-DRFS rate). Similar results were found in the validation set. Conclusions: We developed two prognostic models based on age, pT, and pN to select the best one to classify TNBC. For Model N°02, delayed adjuvant chemotherapy conferred a higher risk of relapse in patients ≥70 years and who were characterized by pT3/T4 and pN2/N3. Thus, more efforts should be considered to avoid delayed TTC in TNBC patients, especially those in high-risk subgroups. Copyright © 2023 Morante, Ferreyra, Pinto, Valdivieso, Castañeda, Vidaurre, Valencia, Rioja, Fuentes, Cotrina, Neciosup and Gomez.application/pdf10.3389/fonc.2023.1193927https://repositorio.inen.sld.pe/handle/inen/244engFrontiers in OncologyCHFrontiers Media SAinfo:eu-repo/semantics/openAccesshttps//creativecomons.org/licenses/by/4.0/adjuvant chemotherapybreast cancerprognostic factor analysissubpopulation treatment effect pattern plottriple negative breast cancerhttps://purl.org/pe-repo/ocde/ford#3.02.21Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancerinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:INEN-Institucionalinstname:Instituto Nacional de Enfermedades Neoplásicasinstacron:INENPublicationinen/244oai:repositorio.inen.sld.pe:inen/2442024-11-27 17:33:41.671https//creativecomons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.inen.sld.peRepositorio INENrepositorioinendspace@gmail.com
dc.title.none.fl_str_mv Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
title Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
spellingShingle Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
Morante, Z
adjuvant chemotherapy
breast cancer
prognostic factor analysis
subpopulation treatment effect pattern plot
triple negative breast cancer
https://purl.org/pe-repo/ocde/ford#3.02.21
title_short Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
title_full Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
title_fullStr Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
title_full_unstemmed Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
title_sort Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer
author Morante, Z
author_facet Morante, Z
Ferreyra, Y
Pinto, JA
Valdivieso, N
Castañeda, C
Vidaurre, T
Valencia, G
Rioja, P
Fuentes, H
Cotrina, JM
Neciosup, S
Gomez, HL
author_role author
author2 Ferreyra, Y
Pinto, JA
Valdivieso, N
Castañeda, C
Vidaurre, T
Valencia, G
Rioja, P
Fuentes, H
Cotrina, JM
Neciosup, S
Gomez, HL
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Morante, Z
Ferreyra, Y
Pinto, JA
Valdivieso, N
Castañeda, C
Vidaurre, T
Valencia, G
Rioja, P
Fuentes, H
Cotrina, JM
Neciosup, S
Gomez, HL
dc.subject.none.fl_str_mv adjuvant chemotherapy
breast cancer
prognostic factor analysis
subpopulation treatment effect pattern plot
triple negative breast cancer
topic adjuvant chemotherapy
breast cancer
prognostic factor analysis
subpopulation treatment effect pattern plot
triple negative breast cancer
https://purl.org/pe-repo/ocde/ford#3.02.21
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.02.21
description Introduction: Triple-negative breast cancer (TNBC) is a heterogeneous disease associated with a poor prognosis. Delaying in time to start adjuvant chemotherapy (TTC) has been related to an increased risk of distant recurrence-free survival (DRFS). We aimed to develop a prognostic model to estimate the effects of delayed TTC among TNBC risk subgroups. Materials and methods: We analyzed 687 TNBC patients who received adjuvant chemotherapy at the Instituto Nacional de Enfermedades Neoplasicas (Lima, Peru). Database was randomly divided to create a discovery set (n=344) and a validation set (n=343). Univariate and multivariate Cox regression models were performed to identify prognostic factors for DRFS. Risk stratification was implemented through two models developed based on proportional hazard ratios from significant clinicopathological characteristics. Subpopulation treatment effect pattern plot (STEPP) analysis was performed to determine the best prognostic cut-off points for stratifying TNBC subgroups according to risk scores and estimate Kaplan-Meier differences in 10-year DRFS comparing TTC (≤30 vs.>30 days). Results: In univariate analysis, patients aged ≥70 years (HR=4.65; 95% CI: 2.32-9.34; p=<0.001), those at stages pT3-T4 (HR=3.28; 95% CI: 1.57-6.83; p=0.002), and pN2-N3 (HR=3.00; 95% CI: 1.90-4.76; p=<0.001) were notably associated with higher risk. STEPP analysis defined three risk subgroups for each model. Model N°01 categorized patients into low (score: 0–31), intermediate (score:32–64), and high-risk (score: 65–100) cohorts; meanwhile, Model N°02: low (score: 0–26), intermediate (score: 27–55), and high (score: 56–100). Kaplan-Meier plots showed that in the discovery set, patients with TTC>30 days experienced a 17.5% decrease in 10-year DRFS rate (95%CI=6.7-28.3), and the impact was more remarkable in patients who belong to the high-risk subgroup (53.3% decrease in 10 years-DRFS rate). Similar results were found in the validation set. Conclusions: We developed two prognostic models based on age, pT, and pN to select the best one to classify TNBC. For Model N°02, delayed adjuvant chemotherapy conferred a higher risk of relapse in patients ≥70 years and who were characterized by pT3/T4 and pN2/N3. Thus, more efforts should be considered to avoid delayed TTC in TNBC patients, especially those in high-risk subgroups. Copyright © 2023 Morante, Ferreyra, Pinto, Valdivieso, Castañeda, Vidaurre, Valencia, Rioja, Fuentes, Cotrina, Neciosup and Gomez.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-11-27T17:33:41Z
dc.date.available.none.fl_str_mv 2024-11-27T17:33:41Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.3389/fonc.2023.1193927
dc.identifier.uri.none.fl_str_mv https://repositorio.inen.sld.pe/handle/inen/244
identifier_str_mv 10.3389/fonc.2023.1193927
url https://repositorio.inen.sld.pe/handle/inen/244
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Frontiers Media SA
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https//creativecomons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https//creativecomons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers in Oncology
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv Frontiers in Oncology
dc.source.none.fl_str_mv reponame:INEN-Institucional
instname:Instituto Nacional de Enfermedades Neoplásicas
instacron:INEN
instname_str Instituto Nacional de Enfermedades Neoplásicas
instacron_str INEN
institution INEN
reponame_str INEN-Institucional
collection INEN-Institucional
repository.name.fl_str_mv Repositorio INEN
repository.mail.fl_str_mv repositorioinendspace@gmail.com
_version_ 1850047360189595648
score 12.650273
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).