Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science

Descripción del Articulo

The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems...

Descripción completa

Detalles Bibliográficos
Autores: Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., Pi, X., Mannucci, A. J., Wilson, B. D., Komjathy, A., Wang, C., Rosen, G.
Formato: artículo
Fecha de Publicación:2014
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/3589
Enlace del recurso:http://hdl.handle.net/20.500.12816/3589
https://doi.org/10.1002/2014SW001050
Nivel de acceso:acceso abierto
Materia:Ionosphere
Data assimilation
Modeling
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_ae0d3bde168f285139430280f9560959
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/3589
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
title Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
spellingShingle Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
Schunk, R. W.
Ionosphere
Data assimilation
Modeling
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
title_full Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
title_fullStr Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
title_full_unstemmed Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
title_sort Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
author Schunk, R. W.
author_facet Schunk, R. W.
Scherliess, L.
Eccles, V.
Gardner, L. C.
Sojka, J. J.
Zhu, L.
Pi, X.
Mannucci, A. J.
Wilson, B. D.
Komjathy, A.
Wang, C.
Rosen, G.
author_role author
author2 Scherliess, L.
Eccles, V.
Gardner, L. C.
Sojka, J. J.
Zhu, L.
Pi, X.
Mannucci, A. J.
Wilson, B. D.
Komjathy, A.
Wang, C.
Rosen, G.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schunk, R. W.
Scherliess, L.
Eccles, V.
Gardner, L. C.
Sojka, J. J.
Zhu, L.
Pi, X.
Mannucci, A. J.
Wilson, B. D.
Komjathy, A.
Wang, C.
Rosen, G.
dc.subject.none.fl_str_mv Ionosphere
Data assimilation
Modeling
topic Ionosphere
Data assimilation
Modeling
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems that use Global Positioning System (GPS) satellites. Consequently, there is a need to elucidate the underlying physical processes that lead to space weather disturbances and to both mitigate and forecast near-Earth space weather. The meteorologists and oceanographers have shown that data assimilation models are superior to global physics-based models for specifications and forecasts, but only during the last 15 years have they been used for near-Earth investigations as more global (space and ground-based) measurements became available. Although data assimilation models produce better specifications and forecasts than global physicsbased models, there is still a spread in results for a given simulation scenario when different data assimilation models are used. This spread occurs because the different data assimilation models use different data types, data amounts, assimilation techniques, and background physics-based models. This data assimilation issue is being addressed with the launching of the “NASA/NSF Space Weather Modeling Collaboration” program. Currently, our team has seven physics-based data assimilation models for the ionosphere, plasmasphere, thermosphere, and electrodynamics. These models assimilate a myriad of different ground- and space-based observations, and there is more than one data assimilation model for each near-Earth space domain. These data assimilation models are being used to create a Multimodel Ensemble Prediction System (MEPS), which will allow ensemble modeling of the I-T-E system with different data assimilation models that are based on different physical assumptions, assimilation techniques, and initial conditions. The application of ensemble modeling with several different data assimilation models will lead to a paradigm shift in how basic physical processes are studied in near-Earth space, and it is expected to lead to a significant advance in space weather specifications and forecasts.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2018-11-14T15:04:30Z
dc.date.available.none.fl_str_mv 2018-11-14T15:04:30Z
dc.date.issued.fl_str_mv 2014-02-23
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., ... Rosen, G. (2014). Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science.==$Space Weather, 12$==(3), 123-126. https://doi.org/10.1002/2014SW001050
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/3589
dc.identifier.journal.none.fl_str_mv Space Weather
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/2014SW001050
identifier_str_mv Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., ... Rosen, G. (2014). Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science.==$Space Weather, 12$==(3), 123-126. https://doi.org/10.1002/2014SW001050
Space Weather
url http://hdl.handle.net/20.500.12816/3589
https://doi.org/10.1002/2014SW001050
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1542-7390
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/f075d9cf-2cfe-4672-8e1f-d59a7be4be19/download
https://repositorio.igp.gob.pe/bitstreams/80158273-c137-47d7-8b36-19ff8c855e8e/download
https://repositorio.igp.gob.pe/bitstreams/8e899a57-c1be-43c4-add8-f79737c86ee6/download
https://repositorio.igp.gob.pe/bitstreams/0b01a68c-c6dc-47ed-9e48-bc99f84cc0c5/download
bitstream.checksum.fl_str_mv 153dfc9fb04ba8051746f9b8e7bf62d7
ef941c35636116525aadeaab7bbf4ca3
12e3d268d3aeb6f56ec9315533a669b5
f3afff68f1a70d4e08dac811fc1fa905
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618601342763008
spelling Schunk, R. W.Scherliess, L.Eccles, V.Gardner, L. C.Sojka, J. J.Zhu, L.Pi, X.Mannucci, A. J.Wilson, B. D.Komjathy, A.Wang, C.Rosen, G.2018-11-14T15:04:30Z2018-11-14T15:04:30Z2014-02-23Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., ... Rosen, G. (2014). Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science.==$Space Weather, 12$==(3), 123-126. https://doi.org/10.1002/2014SW001050http://hdl.handle.net/20.500.12816/3589Space Weatherhttps://doi.org/10.1002/2014SW001050The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems that use Global Positioning System (GPS) satellites. Consequently, there is a need to elucidate the underlying physical processes that lead to space weather disturbances and to both mitigate and forecast near-Earth space weather. The meteorologists and oceanographers have shown that data assimilation models are superior to global physics-based models for specifications and forecasts, but only during the last 15 years have they been used for near-Earth investigations as more global (space and ground-based) measurements became available. Although data assimilation models produce better specifications and forecasts than global physicsbased models, there is still a spread in results for a given simulation scenario when different data assimilation models are used. This spread occurs because the different data assimilation models use different data types, data amounts, assimilation techniques, and background physics-based models. This data assimilation issue is being addressed with the launching of the “NASA/NSF Space Weather Modeling Collaboration” program. Currently, our team has seven physics-based data assimilation models for the ionosphere, plasmasphere, thermosphere, and electrodynamics. These models assimilate a myriad of different ground- and space-based observations, and there is more than one data assimilation model for each near-Earth space domain. These data assimilation models are being used to create a Multimodel Ensemble Prediction System (MEPS), which will allow ensemble modeling of the I-T-E system with different data assimilation models that are based on different physical assumptions, assimilation techniques, and initial conditions. The application of ensemble modeling with several different data assimilation models will lead to a paradigm shift in how basic physical processes are studied in near-Earth space, and it is expected to lead to a significant advance in space weather specifications and forecasts.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:1542-7390info:eu-repo/semantics/openAccessIonosphereData assimilationModelinghttp://purl.org/pe-repo/ocde/ford#1.05.01Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Scienceinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALIGP-1-1-1-1495464523.pdfIGP-1-1-1-1495464523.pdfapplication/pdf879972https://repositorio.igp.gob.pe/bitstreams/f075d9cf-2cfe-4672-8e1f-d59a7be4be19/download153dfc9fb04ba8051746f9b8e7bf62d7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8391https://repositorio.igp.gob.pe/bitstreams/80158273-c137-47d7-8b36-19ff8c855e8e/downloadef941c35636116525aadeaab7bbf4ca3MD52THUMBNAILIGP-1-1-1-1495464523.pdf.jpgIGP-1-1-1-1495464523.pdf.jpgIM Thumbnailimage/jpeg102295https://repositorio.igp.gob.pe/bitstreams/8e899a57-c1be-43c4-add8-f79737c86ee6/download12e3d268d3aeb6f56ec9315533a669b5MD53TEXTIGP-1-1-1-1495464523.pdf.txtIGP-1-1-1-1495464523.pdf.txtExtracted texttext/plain11846https://repositorio.igp.gob.pe/bitstreams/0b01a68c-c6dc-47ed-9e48-bc99f84cc0c5/downloadf3afff68f1a70d4e08dac811fc1fa905MD5420.500.12816/3589oai:repositorio.igp.gob.pe:20.500.12816/35892025-08-07 12:08:30.94restrictedhttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.pePGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtbmQvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyIC8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbC1TaW5EZXJpdmFkYXMgNC4wIEludGVybmFjaW9uYWw8L2E+Lg==
score 13.875453
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).