Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science
Descripción del Articulo
The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems...
Autores: | , , , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2014 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/3589 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/3589 https://doi.org/10.1002/2014SW001050 |
Nivel de acceso: | acceso abierto |
Materia: | Ionosphere Data assimilation Modeling http://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
IGPR_ae0d3bde168f285139430280f9560959 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/3589 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
title |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
spellingShingle |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science Schunk, R. W. Ionosphere Data assimilation Modeling http://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
title_full |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
title_fullStr |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
title_full_unstemmed |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
title_sort |
Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science |
author |
Schunk, R. W. |
author_facet |
Schunk, R. W. Scherliess, L. Eccles, V. Gardner, L. C. Sojka, J. J. Zhu, L. Pi, X. Mannucci, A. J. Wilson, B. D. Komjathy, A. Wang, C. Rosen, G. |
author_role |
author |
author2 |
Scherliess, L. Eccles, V. Gardner, L. C. Sojka, J. J. Zhu, L. Pi, X. Mannucci, A. J. Wilson, B. D. Komjathy, A. Wang, C. Rosen, G. |
author2_role |
author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Schunk, R. W. Scherliess, L. Eccles, V. Gardner, L. C. Sojka, J. J. Zhu, L. Pi, X. Mannucci, A. J. Wilson, B. D. Komjathy, A. Wang, C. Rosen, G. |
dc.subject.none.fl_str_mv |
Ionosphere Data assimilation Modeling |
topic |
Ionosphere Data assimilation Modeling http://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems that use Global Positioning System (GPS) satellites. Consequently, there is a need to elucidate the underlying physical processes that lead to space weather disturbances and to both mitigate and forecast near-Earth space weather. The meteorologists and oceanographers have shown that data assimilation models are superior to global physics-based models for specifications and forecasts, but only during the last 15 years have they been used for near-Earth investigations as more global (space and ground-based) measurements became available. Although data assimilation models produce better specifications and forecasts than global physicsbased models, there is still a spread in results for a given simulation scenario when different data assimilation models are used. This spread occurs because the different data assimilation models use different data types, data amounts, assimilation techniques, and background physics-based models. This data assimilation issue is being addressed with the launching of the “NASA/NSF Space Weather Modeling Collaboration” program. Currently, our team has seven physics-based data assimilation models for the ionosphere, plasmasphere, thermosphere, and electrodynamics. These models assimilate a myriad of different ground- and space-based observations, and there is more than one data assimilation model for each near-Earth space domain. These data assimilation models are being used to create a Multimodel Ensemble Prediction System (MEPS), which will allow ensemble modeling of the I-T-E system with different data assimilation models that are based on different physical assumptions, assimilation techniques, and initial conditions. The application of ensemble modeling with several different data assimilation models will lead to a paradigm shift in how basic physical processes are studied in near-Earth space, and it is expected to lead to a significant advance in space weather specifications and forecasts. |
publishDate |
2014 |
dc.date.accessioned.none.fl_str_mv |
2018-11-14T15:04:30Z |
dc.date.available.none.fl_str_mv |
2018-11-14T15:04:30Z |
dc.date.issued.fl_str_mv |
2014-02-23 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., ... Rosen, G. (2014). Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science.==$Space Weather, 12$==(3), 123-126. https://doi.org/10.1002/2014SW001050 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/3589 |
dc.identifier.journal.none.fl_str_mv |
Space Weather |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1002/2014SW001050 |
identifier_str_mv |
Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., ... Rosen, G. (2014). Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science.==$Space Weather, 12$==(3), 123-126. https://doi.org/10.1002/2014SW001050 Space Weather |
url |
http://hdl.handle.net/20.500.12816/3589 https://doi.org/10.1002/2014SW001050 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1542-7390 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/f075d9cf-2cfe-4672-8e1f-d59a7be4be19/download https://repositorio.igp.gob.pe/bitstreams/80158273-c137-47d7-8b36-19ff8c855e8e/download https://repositorio.igp.gob.pe/bitstreams/8e899a57-c1be-43c4-add8-f79737c86ee6/download https://repositorio.igp.gob.pe/bitstreams/0b01a68c-c6dc-47ed-9e48-bc99f84cc0c5/download |
bitstream.checksum.fl_str_mv |
153dfc9fb04ba8051746f9b8e7bf62d7 ef941c35636116525aadeaab7bbf4ca3 12e3d268d3aeb6f56ec9315533a669b5 f3afff68f1a70d4e08dac811fc1fa905 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618601342763008 |
spelling |
Schunk, R. W.Scherliess, L.Eccles, V.Gardner, L. C.Sojka, J. J.Zhu, L.Pi, X.Mannucci, A. J.Wilson, B. D.Komjathy, A.Wang, C.Rosen, G.2018-11-14T15:04:30Z2018-11-14T15:04:30Z2014-02-23Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., ... Rosen, G. (2014). Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science.==$Space Weather, 12$==(3), 123-126. https://doi.org/10.1002/2014SW001050http://hdl.handle.net/20.500.12816/3589Space Weatherhttps://doi.org/10.1002/2014SW001050The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems that use Global Positioning System (GPS) satellites. Consequently, there is a need to elucidate the underlying physical processes that lead to space weather disturbances and to both mitigate and forecast near-Earth space weather. The meteorologists and oceanographers have shown that data assimilation models are superior to global physics-based models for specifications and forecasts, but only during the last 15 years have they been used for near-Earth investigations as more global (space and ground-based) measurements became available. Although data assimilation models produce better specifications and forecasts than global physicsbased models, there is still a spread in results for a given simulation scenario when different data assimilation models are used. This spread occurs because the different data assimilation models use different data types, data amounts, assimilation techniques, and background physics-based models. This data assimilation issue is being addressed with the launching of the “NASA/NSF Space Weather Modeling Collaboration” program. Currently, our team has seven physics-based data assimilation models for the ionosphere, plasmasphere, thermosphere, and electrodynamics. These models assimilate a myriad of different ground- and space-based observations, and there is more than one data assimilation model for each near-Earth space domain. These data assimilation models are being used to create a Multimodel Ensemble Prediction System (MEPS), which will allow ensemble modeling of the I-T-E system with different data assimilation models that are based on different physical assumptions, assimilation techniques, and initial conditions. The application of ensemble modeling with several different data assimilation models will lead to a paradigm shift in how basic physical processes are studied in near-Earth space, and it is expected to lead to a significant advance in space weather specifications and forecasts.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:1542-7390info:eu-repo/semantics/openAccessIonosphereData assimilationModelinghttp://purl.org/pe-repo/ocde/ford#1.05.01Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Scienceinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALIGP-1-1-1-1495464523.pdfIGP-1-1-1-1495464523.pdfapplication/pdf879972https://repositorio.igp.gob.pe/bitstreams/f075d9cf-2cfe-4672-8e1f-d59a7be4be19/download153dfc9fb04ba8051746f9b8e7bf62d7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8391https://repositorio.igp.gob.pe/bitstreams/80158273-c137-47d7-8b36-19ff8c855e8e/downloadef941c35636116525aadeaab7bbf4ca3MD52THUMBNAILIGP-1-1-1-1495464523.pdf.jpgIGP-1-1-1-1495464523.pdf.jpgIM Thumbnailimage/jpeg102295https://repositorio.igp.gob.pe/bitstreams/8e899a57-c1be-43c4-add8-f79737c86ee6/download12e3d268d3aeb6f56ec9315533a669b5MD53TEXTIGP-1-1-1-1495464523.pdf.txtIGP-1-1-1-1495464523.pdf.txtExtracted texttext/plain11846https://repositorio.igp.gob.pe/bitstreams/0b01a68c-c6dc-47ed-9e48-bc99f84cc0c5/downloadf3afff68f1a70d4e08dac811fc1fa905MD5420.500.12816/3589oai:repositorio.igp.gob.pe:20.500.12816/35892025-08-07 12:08:30.94restrictedhttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.pePGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtbmQvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyIC8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbC1TaW5EZXJpdmFkYXMgNC4wIEludGVybmFjaW9uYWw8L2E+Lg== |
score |
13.875453 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).