Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model

Descripción del Articulo

The mesosphere and lower thermosphere (MLT) are transitional regions between the lower and upper atmosphere. The MLT dynamics can be investigated using wind measurements conducted with meteor radars. Predicting MLT winds could help forecast ionospheric parameters, which has many implications for glo...

Descripción completa

Detalles Bibliográficos
Autores: Mauricio, Christian, Suclupe, Jose, Milla, Marco, López de Castilla, Carlos, Kuyeng, Karim, Scipión, Danny, Rodriguez, Rodolfo
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5610
Enlace del recurso:http://hdl.handle.net/20.500.12816/5610
https://doi.org/10.3389/fspas.2024.1442315
Nivel de acceso:acceso abierto
Materia:MLT
EM
VMD
LSTM
OPTUNA
Equatorial Aeronomy
Space Physics
https://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_89c1e3ea8383bcfbbb4824230917f391
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5610
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
title Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
spellingShingle Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
Mauricio, Christian
MLT
EM
VMD
LSTM
OPTUNA
Equatorial Aeronomy
Space Physics
https://purl.org/pe-repo/ocde/ford#1.05.01
title_short Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
title_full Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
title_fullStr Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
title_full_unstemmed Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
title_sort Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
author Mauricio, Christian
author_facet Mauricio, Christian
Suclupe, Jose
Milla, Marco
López de Castilla, Carlos
Kuyeng, Karim
Scipión, Danny
Rodriguez, Rodolfo
author_role author
author2 Suclupe, Jose
Milla, Marco
López de Castilla, Carlos
Kuyeng, Karim
Scipión, Danny
Rodriguez, Rodolfo
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Mauricio, Christian
Suclupe, Jose
Milla, Marco
López de Castilla, Carlos
Kuyeng, Karim
Scipión, Danny
Rodriguez, Rodolfo
dc.subject.none.fl_str_mv MLT
EM
VMD
LSTM
OPTUNA
Equatorial Aeronomy
Space Physics
topic MLT
EM
VMD
LSTM
OPTUNA
Equatorial Aeronomy
Space Physics
https://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.01
description The mesosphere and lower thermosphere (MLT) are transitional regions between the lower and upper atmosphere. The MLT dynamics can be investigated using wind measurements conducted with meteor radars. Predicting MLT winds could help forecast ionospheric parameters, which has many implications for global communications and geo-location applications. Several literature sources have developed and compared predictive models for wind speed estimation. However, in recent years, hybrid models have been developed that significantly improve the accuracy of the estimates. These integrate time series decomposition and machine learning techniques to achieve more accurate short-term predictions. This research evaluates a hybrid model that is capable of making a short-term prediction of the horizontal winds between 80 and 95 km altitudes on the coast of Peru at two locations: Lima (12°S, 77°W) and Piura (5°S, 80°W). The model takes a window of 56 data points as input (corresponding to 7 days) and predicts 16 data points as output (corresponding to 2 days). First, the missing data problem was analyzed using the Expectation Maximization algorithm (EM). Then, variational mode decomposition (VMD) separates the components that dominate the winds. Each resulting component is processed separately in a Long short-term memory (LSTM) neural network whose hyperparameters were optimized using the Optuna tool. Then, the final prediction is the sum of the predicted components. The efficiency of the hybrid model is evaluated at different altitudes using the root mean square error (RMSE) and Spearman’s correlation (r). The RMSE ranged from 10.79 to 27.04 ms⁻¹, and the correlation ranged from 0.55 to 0.94. In addition, it is observed that the prediction quality decreases as the prediction time increases. The RMSE at the first step reached 6.04 ms⁻¹ with a correlation of 0.99, while at the sixteenth step, the RMSE increased up to 30.84 ms⁻¹ with a correlation of 0.5.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-26T17:00:26Z
dc.date.available.none.fl_str_mv 2024-09-26T17:00:26Z
dc.date.issued.fl_str_mv 2024-09-23
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Mauricio, C., Suclupe, J., Milla, M., López De Castila, C., Kuyeng, K., Scipion, D., & Rodríguez, R. (2024). Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model.==$Frontiers in Astronomy and Space Sciences, 11.$==https://doi.org/10.3389/fspas.2024.1442315
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5610
dc.identifier.journal.none.fl_str_mv Frontiers in Astronomy and Space Sciences
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3389/fspas.2024.1442315
identifier_str_mv Mauricio, C., Suclupe, J., Milla, M., López De Castila, C., Kuyeng, K., Scipion, D., & Rodríguez, R. (2024). Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model.==$Frontiers in Astronomy and Space Sciences, 11.$==https://doi.org/10.3389/fspas.2024.1442315
index-oti2018
Frontiers in Astronomy and Space Sciences
url http://hdl.handle.net/20.500.12816/5610
https://doi.org/10.3389/fspas.2024.1442315
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2296-987X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/ab2b85aa-28e7-4b42-8781-bd2aebfa8f57/download
https://repositorio.igp.gob.pe/bitstreams/0eacc2f5-a664-47c1-864a-f464478a0c1e/download
https://repositorio.igp.gob.pe/bitstreams/45c76819-068e-473a-a50f-d05af345cfeb/download
https://repositorio.igp.gob.pe/bitstreams/e6b68327-7967-410e-9b0c-b7ff1ed2b1a7/download
bitstream.checksum.fl_str_mv 5a2971d3e98b8c2e4099801300d81e6d
bb9bdc0b3349e4284e09149f943790b4
08e7dcff439fa90c392a2adcb8e90569
5eb86eb508885d7294ce89a01061ee48
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1845788964923899904
spelling Mauricio, ChristianSuclupe, JoseMilla, MarcoLópez de Castilla, CarlosKuyeng, KarimScipión, DannyRodriguez, Rodolfo2024-09-26T17:00:26Z2024-09-26T17:00:26Z2024-09-23Mauricio, C., Suclupe, J., Milla, M., López De Castila, C., Kuyeng, K., Scipion, D., & Rodríguez, R. (2024). Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model.==$Frontiers in Astronomy and Space Sciences, 11.$==https://doi.org/10.3389/fspas.2024.1442315index-oti2018http://hdl.handle.net/20.500.12816/5610Frontiers in Astronomy and Space Scienceshttps://doi.org/10.3389/fspas.2024.1442315The mesosphere and lower thermosphere (MLT) are transitional regions between the lower and upper atmosphere. The MLT dynamics can be investigated using wind measurements conducted with meteor radars. Predicting MLT winds could help forecast ionospheric parameters, which has many implications for global communications and geo-location applications. Several literature sources have developed and compared predictive models for wind speed estimation. However, in recent years, hybrid models have been developed that significantly improve the accuracy of the estimates. These integrate time series decomposition and machine learning techniques to achieve more accurate short-term predictions. This research evaluates a hybrid model that is capable of making a short-term prediction of the horizontal winds between 80 and 95 km altitudes on the coast of Peru at two locations: Lima (12°S, 77°W) and Piura (5°S, 80°W). The model takes a window of 56 data points as input (corresponding to 7 days) and predicts 16 data points as output (corresponding to 2 days). First, the missing data problem was analyzed using the Expectation Maximization algorithm (EM). Then, variational mode decomposition (VMD) separates the components that dominate the winds. Each resulting component is processed separately in a Long short-term memory (LSTM) neural network whose hyperparameters were optimized using the Optuna tool. Then, the final prediction is the sum of the predicted components. The efficiency of the hybrid model is evaluated at different altitudes using the root mean square error (RMSE) and Spearman’s correlation (r). The RMSE ranged from 10.79 to 27.04 ms⁻¹, and the correlation ranged from 0.55 to 0.94. In addition, it is observed that the prediction quality decreases as the prediction time increases. The RMSE at the first step reached 6.04 ms⁻¹ with a correlation of 0.99, while at the sixteenth step, the RMSE increased up to 30.84 ms⁻¹ with a correlation of 0.5.Este trabajo fue apoyado y financiado por PROCIENCIA [contrato 075-2021].Por paresapplication/pdfengFrontiers Mediaurn:issn:2296-987Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/MLTEMVMDLSTMOPTUNAEquatorial AeronomySpace Physicshttps://purl.org/pe-repo/ocde/ford#1.05.01Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid modelinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALMauricio_et_al_2024_FASS.pdfMauricio_et_al_2024_FASS.pdfapplication/pdf68357197https://repositorio.igp.gob.pe/bitstreams/ab2b85aa-28e7-4b42-8781-bd2aebfa8f57/download5a2971d3e98b8c2e4099801300d81e6dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/0eacc2f5-a664-47c1-864a-f464478a0c1e/downloadbb9bdc0b3349e4284e09149f943790b4MD52TEXTMauricio_et_al_2024_FASS.pdf.txtMauricio_et_al_2024_FASS.pdf.txtExtracted texttext/plain62225https://repositorio.igp.gob.pe/bitstreams/45c76819-068e-473a-a50f-d05af345cfeb/download08e7dcff439fa90c392a2adcb8e90569MD53THUMBNAILMauricio_et_al_2024_FASS.pdf.jpgMauricio_et_al_2024_FASS.pdf.jpgGenerated Thumbnailimage/jpeg33880https://repositorio.igp.gob.pe/bitstreams/e6b68327-7967-410e-9b0c-b7ff1ed2b1a7/download5eb86eb508885d7294ce89a01061ee48MD5420.500.12816/5610oai:repositorio.igp.gob.pe:20.500.12816/56102025-10-01 12:05:54.624https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.135628
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).