Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model
Descripción del Articulo
The mesosphere and lower thermosphere (MLT) are transitional regions between the lower and upper atmosphere. The MLT dynamics can be investigated using wind measurements conducted with meteor radars. Predicting MLT winds could help forecast ionospheric parameters, which has many implications for glo...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/5610 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/5610 https://doi.org/10.3389/fspas.2024.1442315 |
Nivel de acceso: | acceso abierto |
Materia: | MLT EM VMD LSTM OPTUNA Equatorial Aeronomy Space Physics https://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
IGPR_89c1e3ea8383bcfbbb4824230917f391 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/5610 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
title |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
spellingShingle |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model Mauricio, Christian MLT EM VMD LSTM OPTUNA Equatorial Aeronomy Space Physics https://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
title_full |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
title_fullStr |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
title_full_unstemmed |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
title_sort |
Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model |
author |
Mauricio, Christian |
author_facet |
Mauricio, Christian Suclupe, Jose Milla, Marco López de Castilla, Carlos Kuyeng, Karim Scipión, Danny Rodriguez, Rodolfo |
author_role |
author |
author2 |
Suclupe, Jose Milla, Marco López de Castilla, Carlos Kuyeng, Karim Scipión, Danny Rodriguez, Rodolfo |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Mauricio, Christian Suclupe, Jose Milla, Marco López de Castilla, Carlos Kuyeng, Karim Scipión, Danny Rodriguez, Rodolfo |
dc.subject.none.fl_str_mv |
MLT EM VMD LSTM OPTUNA Equatorial Aeronomy Space Physics |
topic |
MLT EM VMD LSTM OPTUNA Equatorial Aeronomy Space Physics https://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
The mesosphere and lower thermosphere (MLT) are transitional regions between the lower and upper atmosphere. The MLT dynamics can be investigated using wind measurements conducted with meteor radars. Predicting MLT winds could help forecast ionospheric parameters, which has many implications for global communications and geo-location applications. Several literature sources have developed and compared predictive models for wind speed estimation. However, in recent years, hybrid models have been developed that significantly improve the accuracy of the estimates. These integrate time series decomposition and machine learning techniques to achieve more accurate short-term predictions. This research evaluates a hybrid model that is capable of making a short-term prediction of the horizontal winds between 80 and 95 km altitudes on the coast of Peru at two locations: Lima (12°S, 77°W) and Piura (5°S, 80°W). The model takes a window of 56 data points as input (corresponding to 7 days) and predicts 16 data points as output (corresponding to 2 days). First, the missing data problem was analyzed using the Expectation Maximization algorithm (EM). Then, variational mode decomposition (VMD) separates the components that dominate the winds. Each resulting component is processed separately in a Long short-term memory (LSTM) neural network whose hyperparameters were optimized using the Optuna tool. Then, the final prediction is the sum of the predicted components. The efficiency of the hybrid model is evaluated at different altitudes using the root mean square error (RMSE) and Spearman’s correlation (r). The RMSE ranged from 10.79 to 27.04 ms⁻¹, and the correlation ranged from 0.55 to 0.94. In addition, it is observed that the prediction quality decreases as the prediction time increases. The RMSE at the first step reached 6.04 ms⁻¹ with a correlation of 0.99, while at the sixteenth step, the RMSE increased up to 30.84 ms⁻¹ with a correlation of 0.5. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-26T17:00:26Z |
dc.date.available.none.fl_str_mv |
2024-09-26T17:00:26Z |
dc.date.issued.fl_str_mv |
2024-09-23 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Mauricio, C., Suclupe, J., Milla, M., López De Castila, C., Kuyeng, K., Scipion, D., & Rodríguez, R. (2024). Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model.==$Frontiers in Astronomy and Space Sciences, 11.$==https://doi.org/10.3389/fspas.2024.1442315 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/5610 |
dc.identifier.journal.none.fl_str_mv |
Frontiers in Astronomy and Space Sciences |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3389/fspas.2024.1442315 |
identifier_str_mv |
Mauricio, C., Suclupe, J., Milla, M., López De Castila, C., Kuyeng, K., Scipion, D., & Rodríguez, R. (2024). Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model.==$Frontiers in Astronomy and Space Sciences, 11.$==https://doi.org/10.3389/fspas.2024.1442315 index-oti2018 Frontiers in Astronomy and Space Sciences |
url |
http://hdl.handle.net/20.500.12816/5610 https://doi.org/10.3389/fspas.2024.1442315 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2296-987X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/ab2b85aa-28e7-4b42-8781-bd2aebfa8f57/download https://repositorio.igp.gob.pe/bitstreams/0eacc2f5-a664-47c1-864a-f464478a0c1e/download https://repositorio.igp.gob.pe/bitstreams/45c76819-068e-473a-a50f-d05af345cfeb/download https://repositorio.igp.gob.pe/bitstreams/e6b68327-7967-410e-9b0c-b7ff1ed2b1a7/download |
bitstream.checksum.fl_str_mv |
5a2971d3e98b8c2e4099801300d81e6d bb9bdc0b3349e4284e09149f943790b4 08e7dcff439fa90c392a2adcb8e90569 5eb86eb508885d7294ce89a01061ee48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1845788964923899904 |
spelling |
Mauricio, ChristianSuclupe, JoseMilla, MarcoLópez de Castilla, CarlosKuyeng, KarimScipión, DannyRodriguez, Rodolfo2024-09-26T17:00:26Z2024-09-26T17:00:26Z2024-09-23Mauricio, C., Suclupe, J., Milla, M., López De Castila, C., Kuyeng, K., Scipion, D., & Rodríguez, R. (2024). Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid model.==$Frontiers in Astronomy and Space Sciences, 11.$==https://doi.org/10.3389/fspas.2024.1442315index-oti2018http://hdl.handle.net/20.500.12816/5610Frontiers in Astronomy and Space Scienceshttps://doi.org/10.3389/fspas.2024.1442315The mesosphere and lower thermosphere (MLT) are transitional regions between the lower and upper atmosphere. The MLT dynamics can be investigated using wind measurements conducted with meteor radars. Predicting MLT winds could help forecast ionospheric parameters, which has many implications for global communications and geo-location applications. Several literature sources have developed and compared predictive models for wind speed estimation. However, in recent years, hybrid models have been developed that significantly improve the accuracy of the estimates. These integrate time series decomposition and machine learning techniques to achieve more accurate short-term predictions. This research evaluates a hybrid model that is capable of making a short-term prediction of the horizontal winds between 80 and 95 km altitudes on the coast of Peru at two locations: Lima (12°S, 77°W) and Piura (5°S, 80°W). The model takes a window of 56 data points as input (corresponding to 7 days) and predicts 16 data points as output (corresponding to 2 days). First, the missing data problem was analyzed using the Expectation Maximization algorithm (EM). Then, variational mode decomposition (VMD) separates the components that dominate the winds. Each resulting component is processed separately in a Long short-term memory (LSTM) neural network whose hyperparameters were optimized using the Optuna tool. Then, the final prediction is the sum of the predicted components. The efficiency of the hybrid model is evaluated at different altitudes using the root mean square error (RMSE) and Spearman’s correlation (r). The RMSE ranged from 10.79 to 27.04 ms⁻¹, and the correlation ranged from 0.55 to 0.94. In addition, it is observed that the prediction quality decreases as the prediction time increases. The RMSE at the first step reached 6.04 ms⁻¹ with a correlation of 0.99, while at the sixteenth step, the RMSE increased up to 30.84 ms⁻¹ with a correlation of 0.5.Este trabajo fue apoyado y financiado por PROCIENCIA [contrato 075-2021].Por paresapplication/pdfengFrontiers Mediaurn:issn:2296-987Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/MLTEMVMDLSTMOPTUNAEquatorial AeronomySpace Physicshttps://purl.org/pe-repo/ocde/ford#1.05.01Short-term prediction of horizontal winds in the mesosphere and lower thermosphere over coastal Peru using a hybrid modelinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALMauricio_et_al_2024_FASS.pdfMauricio_et_al_2024_FASS.pdfapplication/pdf68357197https://repositorio.igp.gob.pe/bitstreams/ab2b85aa-28e7-4b42-8781-bd2aebfa8f57/download5a2971d3e98b8c2e4099801300d81e6dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/0eacc2f5-a664-47c1-864a-f464478a0c1e/downloadbb9bdc0b3349e4284e09149f943790b4MD52TEXTMauricio_et_al_2024_FASS.pdf.txtMauricio_et_al_2024_FASS.pdf.txtExtracted texttext/plain62225https://repositorio.igp.gob.pe/bitstreams/45c76819-068e-473a-a50f-d05af345cfeb/download08e7dcff439fa90c392a2adcb8e90569MD53THUMBNAILMauricio_et_al_2024_FASS.pdf.jpgMauricio_et_al_2024_FASS.pdf.jpgGenerated Thumbnailimage/jpeg33880https://repositorio.igp.gob.pe/bitstreams/e6b68327-7967-410e-9b0c-b7ff1ed2b1a7/download5eb86eb508885d7294ce89a01061ee48MD5420.500.12816/5610oai:repositorio.igp.gob.pe:20.500.12816/56102025-10-01 12:05:54.624https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.135628 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).