Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
Descripción del Articulo
This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image dat...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Instituto Geofísico del Perú |
| Repositorio: | IGP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/5673 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12816/5673 https://doi.org/10.1016/j.jvolgeores.2024.108097 |
| Nivel de acceso: | acceso abierto |
| Materia: | Visual observations Seismic signals Explosive activity monitoring Sabancaya volcano https://purl.org/pe-repo/ocde/ford#1.05.07 |
| id |
IGPR_5d5982ac2897c8d8d7de80fa37c53552 |
|---|---|
| oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/5673 |
| network_acronym_str |
IGPR |
| network_name_str |
IGP-Institucional |
| repository_id_str |
4701 |
| dc.title.none.fl_str_mv |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| title |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| spellingShingle |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru Centeno Quico, Riky Visual observations Seismic signals Explosive activity monitoring Sabancaya volcano https://purl.org/pe-repo/ocde/ford#1.05.07 |
| title_short |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| title_full |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| title_fullStr |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| title_full_unstemmed |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| title_sort |
Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru |
| author |
Centeno Quico, Riky |
| author_facet |
Centeno Quico, Riky Gómez-Salcedo, Valeria Lazarte Zerpa, lvonne Alejandra Vilca-Nina, Javier Osores, Soledad Mayhua-Lopez, Efraín |
| author_role |
author |
| author2 |
Gómez-Salcedo, Valeria Lazarte Zerpa, lvonne Alejandra Vilca-Nina, Javier Osores, Soledad Mayhua-Lopez, Efraín |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Centeno Quico, Riky Gómez-Salcedo, Valeria Lazarte Zerpa, lvonne Alejandra Vilca-Nina, Javier Osores, Soledad Mayhua-Lopez, Efraín |
| dc.subject.none.fl_str_mv |
Visual observations Seismic signals Explosive activity monitoring Sabancaya volcano |
| topic |
Visual observations Seismic signals Explosive activity monitoring Sabancaya volcano https://purl.org/pe-repo/ocde/ford#1.05.07 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.07 |
| description |
This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-02-11T13:33:39Z |
| dc.date.available.none.fl_str_mv |
2025-02-11T13:33:39Z |
| dc.date.issued.fl_str_mv |
2024-05-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097 |
| dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/5673 |
| dc.identifier.journal.none.fl_str_mv |
Journal of Volcanology and Geothermal Research |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jvolgeores.2024.108097 |
| identifier_str_mv |
Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097 index-oti2018 Journal of Volcanology and Geothermal Research |
| url |
http://hdl.handle.net/20.500.12816/5673 https://doi.org/10.1016/j.jvolgeores.2024.108097 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:1872-6097 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
| instname_str |
Instituto Geofísico del Perú |
| instacron_str |
IGP |
| institution |
IGP |
| reponame_str |
IGP-Institucional |
| collection |
IGP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/f7dbdd03-edcf-437b-8ad3-968f86d8a4bc/download https://repositorio.igp.gob.pe/bitstreams/6dd952cf-20dc-4878-b2e9-543927eb3bc1/download https://repositorio.igp.gob.pe/bitstreams/d0a90528-2169-4a91-ada4-4cadb1802ad6/download https://repositorio.igp.gob.pe/bitstreams/29fe2f65-a954-46a2-9071-ce4ae85012fa/download |
| bitstream.checksum.fl_str_mv |
bb9bdc0b3349e4284e09149f943790b4 6b6eb65558cdf58e2a192ddb15d51183 4f843ed6976725f88fd61b82639cee64 61e1fb6f2db51d1d8830740d7b0a2c00 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
| repository.mail.fl_str_mv |
biblio@igp.gob.pe |
| _version_ |
1842618312756822016 |
| spelling |
Centeno Quico, RikyGómez-Salcedo, ValeriaLazarte Zerpa, lvonne AlejandraVilca-Nina, JavierOsores, SoledadMayhua-Lopez, Efraín2025-02-11T13:33:39Z2025-02-11T13:33:39Z2024-05-11Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097index-oti2018http://hdl.handle.net/20.500.12816/5673Journal of Volcanology and Geothermal Researchhttps://doi.org/10.1016/j.jvolgeores.2024.108097This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring.Este trabajo fue financiado por PROCIENCIA - CONCYTEC en el marco del proyecto “Detección y Caracterización Automática de Explosiones Volcánicas como Herramienta de Apoyo a la Mitigación de sus Efectos sobre la Población: Estudio de caso del volcán Sabancaya” [número de contrato PE501079066-2022].Por paresapplication/pdfengElsevierurn:issn:1872-6097info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Visual observationsSeismic signalsExplosive activity monitoringSabancaya volcanohttps://purl.org/pe-repo/ocde/ford#1.05.07Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peruinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/f7dbdd03-edcf-437b-8ad3-968f86d8a4bc/downloadbb9bdc0b3349e4284e09149f943790b4MD51ORIGINALCenteno_et_al_2024_Elsevier.pdfapplication/pdf16856298https://repositorio.igp.gob.pe/bitstreams/6dd952cf-20dc-4878-b2e9-543927eb3bc1/download6b6eb65558cdf58e2a192ddb15d51183MD52TEXTCenteno_et_al_2024_Elsevier.pdf.txtCenteno_et_al_2024_Elsevier.pdf.txtExtracted texttext/plain100619https://repositorio.igp.gob.pe/bitstreams/d0a90528-2169-4a91-ada4-4cadb1802ad6/download4f843ed6976725f88fd61b82639cee64MD53THUMBNAILCenteno_et_al_2024_Elsevier.pdf.jpgCenteno_et_al_2024_Elsevier.pdf.jpgGenerated Thumbnailimage/jpeg41313https://repositorio.igp.gob.pe/bitstreams/29fe2f65-a954-46a2-9071-ce4ae85012fa/download61e1fb6f2db51d1d8830740d7b0a2c00MD5420.500.12816/5673oai:repositorio.igp.gob.pe:20.500.12816/56732025-02-11 10:42:15.977https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessrestrictedhttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).