Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru

Descripción del Articulo

This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image dat...

Descripción completa

Detalles Bibliográficos
Autores: Centeno Quico, Riky, Gómez-Salcedo, Valeria, Lazarte Zerpa, lvonne Alejandra, Vilca-Nina, Javier, Osores, Soledad, Mayhua-Lopez, Efraín
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5673
Enlace del recurso:http://hdl.handle.net/20.500.12816/5673
https://doi.org/10.1016/j.jvolgeores.2024.108097
Nivel de acceso:acceso abierto
Materia:Visual observations
Seismic signals
Explosive activity monitoring
Sabancaya volcano
https://purl.org/pe-repo/ocde/ford#1.05.07
id IGPR_5d5982ac2897c8d8d7de80fa37c53552
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5673
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
title Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
spellingShingle Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
Centeno Quico, Riky
Visual observations
Seismic signals
Explosive activity monitoring
Sabancaya volcano
https://purl.org/pe-repo/ocde/ford#1.05.07
title_short Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
title_full Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
title_fullStr Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
title_full_unstemmed Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
title_sort Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
author Centeno Quico, Riky
author_facet Centeno Quico, Riky
Gómez-Salcedo, Valeria
Lazarte Zerpa, lvonne Alejandra
Vilca-Nina, Javier
Osores, Soledad
Mayhua-Lopez, Efraín
author_role author
author2 Gómez-Salcedo, Valeria
Lazarte Zerpa, lvonne Alejandra
Vilca-Nina, Javier
Osores, Soledad
Mayhua-Lopez, Efraín
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Centeno Quico, Riky
Gómez-Salcedo, Valeria
Lazarte Zerpa, lvonne Alejandra
Vilca-Nina, Javier
Osores, Soledad
Mayhua-Lopez, Efraín
dc.subject.none.fl_str_mv Visual observations
Seismic signals
Explosive activity monitoring
Sabancaya volcano
topic Visual observations
Seismic signals
Explosive activity monitoring
Sabancaya volcano
https://purl.org/pe-repo/ocde/ford#1.05.07
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.07
description This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-02-11T13:33:39Z
dc.date.available.none.fl_str_mv 2025-02-11T13:33:39Z
dc.date.issued.fl_str_mv 2024-05-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5673
dc.identifier.journal.none.fl_str_mv Journal of Volcanology and Geothermal Research
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jvolgeores.2024.108097
identifier_str_mv Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097
index-oti2018
Journal of Volcanology and Geothermal Research
url http://hdl.handle.net/20.500.12816/5673
https://doi.org/10.1016/j.jvolgeores.2024.108097
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1872-6097
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/f7dbdd03-edcf-437b-8ad3-968f86d8a4bc/download
https://repositorio.igp.gob.pe/bitstreams/6dd952cf-20dc-4878-b2e9-543927eb3bc1/download
https://repositorio.igp.gob.pe/bitstreams/d0a90528-2169-4a91-ada4-4cadb1802ad6/download
https://repositorio.igp.gob.pe/bitstreams/29fe2f65-a954-46a2-9071-ce4ae85012fa/download
bitstream.checksum.fl_str_mv bb9bdc0b3349e4284e09149f943790b4
6b6eb65558cdf58e2a192ddb15d51183
4f843ed6976725f88fd61b82639cee64
61e1fb6f2db51d1d8830740d7b0a2c00
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618312756822016
spelling Centeno Quico, RikyGómez-Salcedo, ValeriaLazarte Zerpa, lvonne AlejandraVilca-Nina, JavierOsores, SoledadMayhua-Lopez, Efraín2025-02-11T13:33:39Z2025-02-11T13:33:39Z2024-05-11Centeno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097index-oti2018http://hdl.handle.net/20.500.12816/5673Journal of Volcanology and Geothermal Researchhttps://doi.org/10.1016/j.jvolgeores.2024.108097This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring.Este trabajo fue financiado por PROCIENCIA - CONCYTEC en el marco del proyecto “Detección y Caracterización Automática de Explosiones Volcánicas como Herramienta de Apoyo a la Mitigación de sus Efectos sobre la Población: Estudio de caso del volcán Sabancaya” [número de contrato PE501079066-2022].Por paresapplication/pdfengElsevierurn:issn:1872-6097info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Visual observationsSeismic signalsExplosive activity monitoringSabancaya volcanohttps://purl.org/pe-repo/ocde/ford#1.05.07Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peruinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/f7dbdd03-edcf-437b-8ad3-968f86d8a4bc/downloadbb9bdc0b3349e4284e09149f943790b4MD51ORIGINALCenteno_et_al_2024_Elsevier.pdfapplication/pdf16856298https://repositorio.igp.gob.pe/bitstreams/6dd952cf-20dc-4878-b2e9-543927eb3bc1/download6b6eb65558cdf58e2a192ddb15d51183MD52TEXTCenteno_et_al_2024_Elsevier.pdf.txtCenteno_et_al_2024_Elsevier.pdf.txtExtracted texttext/plain100619https://repositorio.igp.gob.pe/bitstreams/d0a90528-2169-4a91-ada4-4cadb1802ad6/download4f843ed6976725f88fd61b82639cee64MD53THUMBNAILCenteno_et_al_2024_Elsevier.pdf.jpgCenteno_et_al_2024_Elsevier.pdf.jpgGenerated Thumbnailimage/jpeg41313https://repositorio.igp.gob.pe/bitstreams/29fe2f65-a954-46a2-9071-ce4ae85012fa/download61e1fb6f2db51d1d8830740d7b0a2c00MD5420.500.12816/5673oai:repositorio.igp.gob.pe:20.500.12816/56732025-02-11 10:42:15.977https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessrestrictedhttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).