Ionospheric imaging with compressed sensing

Descripción del Articulo

Compressed sensing is a novel theory of sampling and reconstruction that has emerged in the past several years. It seeks to leverage the inherent sparsity of natural images to reduce the number of necessary measurements to a sub-Nyquist level. We discuss how ideas from compressed sensing can benet i...

Descripción completa

Detalles Bibliográficos
Autor: Harding, Brian
Formato: tesis de maestría
Fecha de Publicación:2013
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4452
Enlace del recurso:http://hdl.handle.net/20.500.12816/4452
Nivel de acceso:acceso abierto
Materia:Ionosphere
Image Processing
Compression detection
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
http://purl.org/pe-repo/ocde/ford#2.02.00
id IGPR_37514eecf995c37e2a7f144d3b773098
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4452
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.es_ES.fl_str_mv Ionospheric imaging with compressed sensing
title Ionospheric imaging with compressed sensing
spellingShingle Ionospheric imaging with compressed sensing
Harding, Brian
Ionosphere
Image Processing
Compression detection
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
http://purl.org/pe-repo/ocde/ford#2.02.00
title_short Ionospheric imaging with compressed sensing
title_full Ionospheric imaging with compressed sensing
title_fullStr Ionospheric imaging with compressed sensing
title_full_unstemmed Ionospheric imaging with compressed sensing
title_sort Ionospheric imaging with compressed sensing
author Harding, Brian
author_facet Harding, Brian
author_role author
dc.contributor.advisor.fl_str_mv Makela, Jonathan.
dc.contributor.author.fl_str_mv Harding, Brian
dc.subject.es_ES.fl_str_mv Ionosphere
Image Processing
Compression detection
Radar
topic Ionosphere
Image Processing
Compression detection
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
http://purl.org/pe-repo/ocde/ford#2.02.00
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
http://purl.org/pe-repo/ocde/ford#2.02.00
description Compressed sensing is a novel theory of sampling and reconstruction that has emerged in the past several years. It seeks to leverage the inherent sparsity of natural images to reduce the number of necessary measurements to a sub-Nyquist level. We discuss how ideas from compressed sensing can benet ionospheric imaging in two ways. Compressed sensing suggests signal reconstruction techniques that take advantage of sparsity, oering us new ways of interpreting data, especially for undersampled problems. One example is radar imaging. We explain how compressed sensing can be used for radar imaging and show results that suggest improved performance over existing techniques. In addition to benetting the way we use data, compressed sensing can improve how we gather data, allowing us to shift complexity from sensing to reconstruction. One example is airglow imaging, wherein we propose replacing CCD-based imagers with single-pixel, compressive imagers. This will reduce the cost of airglow imagers and allow access to spatial information at infrared wavelengths. We show preliminary simulation results suggesting this technique may be feasible for airglow imaging.
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2019-04-10T12:03:41Z
dc.date.available.none.fl_str_mv 2019-04-10T12:03:41Z
dc.date.issued.fl_str_mv 2013
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.citation.es_ES.fl_str_mv Harding, B. (2013).==$Ionospheric imaging with compressed sensing$==(Thesis for the degree of Master of Science in Electrical and Computer Engineering). University of Illinois, United States.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4452
identifier_str_mv Harding, B. (2013).==$Ionospheric imaging with compressed sensing$==(Thesis for the degree of Master of Science in Electrical and Computer Engineering). University of Illinois, United States.
url http://hdl.handle.net/20.500.12816/4452
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licences/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licences/by/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv University of Illinois
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/f1ab01c5-b82a-4aea-badc-069e943ba209/download
https://repositorio.igp.gob.pe/bitstreams/3288463e-d908-4e51-85fb-c1942c2e813d/download
https://repositorio.igp.gob.pe/bitstreams/2b18d1ff-d4d7-4c77-bcb4-31f91fb97fba/download
https://repositorio.igp.gob.pe/bitstreams/bee550d3-d12a-4544-9c7c-9f2f68e7555b/download
bitstream.checksum.fl_str_mv cd6c3228f9c37e3ebfd64313c5d25b06
8a4605be74aa9ea9d79846c1fba20a33
243433704fc16b6a9aa8d21a3bb73a1b
ebe26a11e894685b8639fbb60b54267c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico del Peru
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1842618507093606400
spelling Makela, Jonathan.Harding, Brian2019-04-10T12:03:41Z2019-04-10T12:03:41Z2013Harding, B. (2013).==$Ionospheric imaging with compressed sensing$==(Thesis for the degree of Master of Science in Electrical and Computer Engineering). University of Illinois, United States.http://hdl.handle.net/20.500.12816/4452Compressed sensing is a novel theory of sampling and reconstruction that has emerged in the past several years. It seeks to leverage the inherent sparsity of natural images to reduce the number of necessary measurements to a sub-Nyquist level. We discuss how ideas from compressed sensing can benet ionospheric imaging in two ways. Compressed sensing suggests signal reconstruction techniques that take advantage of sparsity, oering us new ways of interpreting data, especially for undersampled problems. One example is radar imaging. We explain how compressed sensing can be used for radar imaging and show results that suggest improved performance over existing techniques. In addition to benetting the way we use data, compressed sensing can improve how we gather data, allowing us to shift complexity from sensing to reconstruction. One example is airglow imaging, wherein we propose replacing CCD-based imagers with single-pixel, compressive imagers. This will reduce the cost of airglow imagers and allow access to spatial information at infrared wavelengths. We show preliminary simulation results suggesting this technique may be feasible for airglow imaging.Tesisapplication/pdfengUniversity of Illinoisinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/IonosphereImage ProcessingCompression detectionRadarhttp://purl.org/pe-repo/ocde/ford#1.05.01http://purl.org/pe-repo/ocde/ford#2.02.00Ionospheric imaging with compressed sensinginfo:eu-repo/semantics/masterThesisreponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPMaestría en Ciencias en Ingeniería Eléctrica e InformáticaUniversity of Illinois at Urbana-ChampaignMaestríaIngeniería Eléctrica e InformáticaORIGINALHarding, B. 2013..pdfHarding, B. 2013..pdfapplication/pdf1494673https://repositorio.igp.gob.pe/bitstreams/f1ab01c5-b82a-4aea-badc-069e943ba209/downloadcd6c3228f9c37e3ebfd64313c5d25b06MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/3288463e-d908-4e51-85fb-c1942c2e813d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILHarding, B. 2013..pdf.jpgHarding, B. 2013..pdf.jpgIM Thumbnailimage/jpeg4676https://repositorio.igp.gob.pe/bitstreams/2b18d1ff-d4d7-4c77-bcb4-31f91fb97fba/download243433704fc16b6a9aa8d21a3bb73a1bMD53TEXTHarding, B. 2013..pdf.txtHarding, B. 2013..pdf.txtExtracted texttext/plain126642https://repositorio.igp.gob.pe/bitstreams/bee550d3-d12a-4544-9c7c-9f2f68e7555b/downloadebe26a11e894685b8639fbb60b54267cMD5420.500.12816/4452oai:repositorio.igp.gob.pe:20.500.12816/44522020-12-18 17:11:33.544https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico del Perudspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).