Ionospheric imaging with compressed sensing
Descripción del Articulo
Compressed sensing is a novel theory of sampling and reconstruction that has emerged in the past several years. It seeks to leverage the inherent sparsity of natural images to reduce the number of necessary measurements to a sub-Nyquist level. We discuss how ideas from compressed sensing can benet i...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2013 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/4452 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/4452 |
Nivel de acceso: | acceso abierto |
Materia: | Ionosphere Image Processing Compression detection Radar http://purl.org/pe-repo/ocde/ford#1.05.01 http://purl.org/pe-repo/ocde/ford#2.02.00 |
id |
IGPR_37514eecf995c37e2a7f144d3b773098 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/4452 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.es_ES.fl_str_mv |
Ionospheric imaging with compressed sensing |
title |
Ionospheric imaging with compressed sensing |
spellingShingle |
Ionospheric imaging with compressed sensing Harding, Brian Ionosphere Image Processing Compression detection Radar http://purl.org/pe-repo/ocde/ford#1.05.01 http://purl.org/pe-repo/ocde/ford#2.02.00 |
title_short |
Ionospheric imaging with compressed sensing |
title_full |
Ionospheric imaging with compressed sensing |
title_fullStr |
Ionospheric imaging with compressed sensing |
title_full_unstemmed |
Ionospheric imaging with compressed sensing |
title_sort |
Ionospheric imaging with compressed sensing |
author |
Harding, Brian |
author_facet |
Harding, Brian |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Makela, Jonathan. |
dc.contributor.author.fl_str_mv |
Harding, Brian |
dc.subject.es_ES.fl_str_mv |
Ionosphere Image Processing Compression detection Radar |
topic |
Ionosphere Image Processing Compression detection Radar http://purl.org/pe-repo/ocde/ford#1.05.01 http://purl.org/pe-repo/ocde/ford#2.02.00 |
dc.subject.ocde.es_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.01 http://purl.org/pe-repo/ocde/ford#2.02.00 |
description |
Compressed sensing is a novel theory of sampling and reconstruction that has emerged in the past several years. It seeks to leverage the inherent sparsity of natural images to reduce the number of necessary measurements to a sub-Nyquist level. We discuss how ideas from compressed sensing can benet ionospheric imaging in two ways. Compressed sensing suggests signal reconstruction techniques that take advantage of sparsity, oering us new ways of interpreting data, especially for undersampled problems. One example is radar imaging. We explain how compressed sensing can be used for radar imaging and show results that suggest improved performance over existing techniques. In addition to benetting the way we use data, compressed sensing can improve how we gather data, allowing us to shift complexity from sensing to reconstruction. One example is airglow imaging, wherein we propose replacing CCD-based imagers with single-pixel, compressive imagers. This will reduce the cost of airglow imagers and allow access to spatial information at infrared wavelengths. We show preliminary simulation results suggesting this technique may be feasible for airglow imaging. |
publishDate |
2013 |
dc.date.accessioned.none.fl_str_mv |
2019-04-10T12:03:41Z |
dc.date.available.none.fl_str_mv |
2019-04-10T12:03:41Z |
dc.date.issued.fl_str_mv |
2013 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.citation.es_ES.fl_str_mv |
Harding, B. (2013).==$Ionospheric imaging with compressed sensing$==(Thesis for the degree of Master of Science in Electrical and Computer Engineering). University of Illinois, United States. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/4452 |
identifier_str_mv |
Harding, B. (2013).==$Ionospheric imaging with compressed sensing$==(Thesis for the degree of Master of Science in Electrical and Computer Engineering). University of Illinois, United States. |
url |
http://hdl.handle.net/20.500.12816/4452 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licences/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licences/by/4.0/ |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
University of Illinois |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/f1ab01c5-b82a-4aea-badc-069e943ba209/download https://repositorio.igp.gob.pe/bitstreams/3288463e-d908-4e51-85fb-c1942c2e813d/download https://repositorio.igp.gob.pe/bitstreams/2b18d1ff-d4d7-4c77-bcb4-31f91fb97fba/download https://repositorio.igp.gob.pe/bitstreams/bee550d3-d12a-4544-9c7c-9f2f68e7555b/download |
bitstream.checksum.fl_str_mv |
cd6c3228f9c37e3ebfd64313c5d25b06 8a4605be74aa9ea9d79846c1fba20a33 243433704fc16b6a9aa8d21a3bb73a1b ebe26a11e894685b8639fbb60b54267c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico del Peru |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1842618507093606400 |
spelling |
Makela, Jonathan.Harding, Brian2019-04-10T12:03:41Z2019-04-10T12:03:41Z2013Harding, B. (2013).==$Ionospheric imaging with compressed sensing$==(Thesis for the degree of Master of Science in Electrical and Computer Engineering). University of Illinois, United States.http://hdl.handle.net/20.500.12816/4452Compressed sensing is a novel theory of sampling and reconstruction that has emerged in the past several years. It seeks to leverage the inherent sparsity of natural images to reduce the number of necessary measurements to a sub-Nyquist level. We discuss how ideas from compressed sensing can benet ionospheric imaging in two ways. Compressed sensing suggests signal reconstruction techniques that take advantage of sparsity, oering us new ways of interpreting data, especially for undersampled problems. One example is radar imaging. We explain how compressed sensing can be used for radar imaging and show results that suggest improved performance over existing techniques. In addition to benetting the way we use data, compressed sensing can improve how we gather data, allowing us to shift complexity from sensing to reconstruction. One example is airglow imaging, wherein we propose replacing CCD-based imagers with single-pixel, compressive imagers. This will reduce the cost of airglow imagers and allow access to spatial information at infrared wavelengths. We show preliminary simulation results suggesting this technique may be feasible for airglow imaging.Tesisapplication/pdfengUniversity of Illinoisinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/IonosphereImage ProcessingCompression detectionRadarhttp://purl.org/pe-repo/ocde/ford#1.05.01http://purl.org/pe-repo/ocde/ford#2.02.00Ionospheric imaging with compressed sensinginfo:eu-repo/semantics/masterThesisreponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPMaestría en Ciencias en Ingeniería Eléctrica e InformáticaUniversity of Illinois at Urbana-ChampaignMaestríaIngeniería Eléctrica e InformáticaORIGINALHarding, B. 2013..pdfHarding, B. 2013..pdfapplication/pdf1494673https://repositorio.igp.gob.pe/bitstreams/f1ab01c5-b82a-4aea-badc-069e943ba209/downloadcd6c3228f9c37e3ebfd64313c5d25b06MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/3288463e-d908-4e51-85fb-c1942c2e813d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILHarding, B. 2013..pdf.jpgHarding, B. 2013..pdf.jpgIM Thumbnailimage/jpeg4676https://repositorio.igp.gob.pe/bitstreams/2b18d1ff-d4d7-4c77-bcb4-31f91fb97fba/download243433704fc16b6a9aa8d21a3bb73a1bMD53TEXTHarding, B. 2013..pdf.txtHarding, B. 2013..pdf.txtExtracted texttext/plain126642https://repositorio.igp.gob.pe/bitstreams/bee550d3-d12a-4544-9c7c-9f2f68e7555b/downloadebe26a11e894685b8639fbb60b54267cMD5420.500.12816/4452oai:repositorio.igp.gob.pe:20.500.12816/44522020-12-18 17:11:33.544https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico del Perudspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.982926 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).