Quadrinomial trees with stochastic volatility to value real options
Descripción del Articulo
Purpose. The purpose of this article is to propose a detailed methodology to estimate, model and incorporate the non-constant volatility onto a numerical tree scheme, to evaluate a real option, using a quadrinomial multiplicative recombination. Design/methodology/approach. This article uses the mult...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad ESAN |
Repositorio: | ESAN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.esan.edu.pe:20.500.12640/2834 |
Enlace del recurso: | https://revistas.esan.edu.pe/index.php/jefas/article/view/562 https://hdl.handle.net/20.500.12640/2834 https://doi.org/10.1108/JEFAS-08-2020-0306 |
Nivel de acceso: | acceso abierto |
Materia: | Real options Stochastic volatility Diffusion processes GARCH-diffusion Quadrinomial numerical method Opciones reales Volatilidad estocástica Procesos de difusión Difusión GARCH Método numérico cuadrinomio https://purl.org/pe-repo/ocde/ford#5.02.04 |
Sumario: | Purpose. The purpose of this article is to propose a detailed methodology to estimate, model and incorporate the non-constant volatility onto a numerical tree scheme, to evaluate a real option, using a quadrinomial multiplicative recombination. Design/methodology/approach. This article uses the multiplicative quadrinomial tree numerical method with non-constant volatility, based on stochastic differential equations of the GARCH-diffusion type to value real options when the volatility is stochastic. Findings. Findings showed that in the proposed method with volatility tends to zero, the multiplicative binomial traditional method is a particular case, and results are comparable between these methodologies, as well as to the exact solution offered by the Black–Scholes model. Originality/value. The originality of this paper lies in try to model the implicit (conditional) market volatility to assess, based on that, a real option using a quadrinomial tree, including into this valuation the stochastic volatility of the underlying asset. The main contribution is the formal derivation of a risk-neutral valuation as well as the market risk premium associated with volatility, verifying this condition via numerical test on simulated and real data, showing that our proposal is consistent with Black and Scholes formula and multiplicative binomial trees method. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).