Economic development, weather shocks and child marriage in South Asia: a machine learning approach

Descripción del Articulo

Globally, 21 percent of young women are married before their 18th birthday. Despite some progress in addressing child marriage, it remains a widespread practice, in particular in South Asia. While household predictors of child marriage have been studied extensively in the literature, the evidence ba...

Descripción completa

Detalles Bibliográficos
Autores: Dietrich, Stephan, Meysonnat, Aline, Rosales, Francisco, Cebotari, Victor, Gassmann, Franziska
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3147
Enlace del recurso:https://hdl.handle.net/20.500.12640/3147
https://doi.org/10.1371/journal.pone.0271373
Nivel de acceso:acceso abierto
Materia:Flooding
Human families
Child health
Child marriage
Machine learning
India
Bangladesh
Asia
Nepal
Pakistan
Inundaciones
Familias humanas
Salud infantil
Matrimonio infantil
Aprendizaje automático
Pakistán
https://purl.org/pe-repo/ocde/ford#3.03.12
id ESAN_9d73df558a7c0c7dd7cc64c0b4c1a7d5
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/3147
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
spelling Dietrich, StephanMeysonnat, AlineRosales, FranciscoCebotari, VictorGassmann, Franziska2022-10-15T12:50:14Z2022-10-15T12:50:14Z2022-09-01Dietrich, S., Meysonnat, A., Rosales, F., Cebotari, V., & Gassmann, F. (2022). Economic development, weather shocks and child marriage in South Asia: a machine learning approach. PLoS ONE 17(9), e0271373. https://doi.org/10.1371/journal.pone.0271373https://hdl.handle.net/20.500.12640/3147https://doi.org/10.1371/journal.pone.0271373Globally, 21 percent of young women are married before their 18th birthday. Despite some progress in addressing child marriage, it remains a widespread practice, in particular in South Asia. While household predictors of child marriage have been studied extensively in the literature, the evidence base on macro-economic factors contributing to child marriage and models that predict where child marriage cases are most likely to occur remains limited. In this paper we aim to fill this gap and explore region-level indicators to predict the persistence of child marriage in four countries in South Asia, namely Bangladesh, India, Nepal and Pakistan. We apply machine learning techniques to child marriage data and develop a prediction model that relies largely on regional and local inputs such as droughts, floods, population growth and nightlight data to model the incidence of child marriages. We find that our gradient boosting model is able to identify a large proportion of the true child marriage cases and correctly classifies 77% of the true marriage cases, with a higher accuracy in Bangladesh (92% of the cases) and a lower accuracy in Nepal (70% of cases). In addition, all countries contain in their top 10 variables for classification nighttime light growth, a shock index of drought over the previous and the last two years and the regional level of education, suggesting that income shocks, regional economic activity and regional education levels play a significant role in predicting child marriage. Given the accuracy of the model to predict child marriage, our model is a valuable tool to support policy design in countries where household-level data remains limited.application/pdfInglésengPublic Library of Science (PLoS)USurn:issn:1932-6203https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271373info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttps://creativecommons.org/licenses/by/4.0/FloodingHuman familiesChild healthChild marriageMachine learningIndiaBangladeshAsiaNepalPakistanInundacionesFamilias humanasSalud infantilMatrimonio infantilAprendizaje automáticoIndiaBangladeshAsiaNepalPakistánhttps://purl.org/pe-repo/ocde/ford#3.03.12Economic development, weather shocks and child marriage in South Asia: a machine learning approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANhttps://orcid.org/0000-0003-2347-632XAcceso abiertoPLoS ONE9e027137317ORIGINALrosales_2022.pdfrosales_2022.pdfTexto completoapplication/pdf955296https://repositorio.esan.edu.pe/bitstreams/a03b2ec2-6a4c-4a37-8ee1-e2525715283c/download07c941da0e44f53562ab09502aff25a8MD51trueAnonymousREADTEXTrosales_2022.pdf.txtrosales_2022.pdf.txtExtracted texttext/plain97800https://repositorio.esan.edu.pe/bitstreams/55d2c0e7-b7db-4821-9b38-60d4fb1ea983/download911791e64698c22e1684106e3830b1ceMD56falseAnonymousREADTHUMBNAILrosales_2022.pngrosales_2022.pngimage/png141986https://repositorio.esan.edu.pe/bitstreams/f965e41b-dfe3-4a81-b8eb-fda6f55b8a19/download7eb22c7ffea739b74c9735157f7c0980MD54falseAnonymousREADrosales_2022.pdf.jpgrosales_2022.pdf.jpgGenerated Thumbnailimage/jpeg5620https://repositorio.esan.edu.pe/bitstreams/589f18e9-fc6a-4838-b8ae-0669ccbcc725/downloaddd880c1bfd371ee6128cbaacc615a222MD57falseAnonymousREAD20.500.12640/3147oai:repositorio.esan.edu.pe:20.500.12640/31472024-11-25 19:41:23.038https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
dc.title.en_EN.fl_str_mv Economic development, weather shocks and child marriage in South Asia: a machine learning approach
title Economic development, weather shocks and child marriage in South Asia: a machine learning approach
spellingShingle Economic development, weather shocks and child marriage in South Asia: a machine learning approach
Dietrich, Stephan
Flooding
Human families
Child health
Child marriage
Machine learning
India
Bangladesh
Asia
Nepal
Pakistan
Inundaciones
Familias humanas
Salud infantil
Matrimonio infantil
Aprendizaje automático
India
Bangladesh
Asia
Nepal
Pakistán
https://purl.org/pe-repo/ocde/ford#3.03.12
title_short Economic development, weather shocks and child marriage in South Asia: a machine learning approach
title_full Economic development, weather shocks and child marriage in South Asia: a machine learning approach
title_fullStr Economic development, weather shocks and child marriage in South Asia: a machine learning approach
title_full_unstemmed Economic development, weather shocks and child marriage in South Asia: a machine learning approach
title_sort Economic development, weather shocks and child marriage in South Asia: a machine learning approach
author Dietrich, Stephan
author_facet Dietrich, Stephan
Meysonnat, Aline
Rosales, Francisco
Cebotari, Victor
Gassmann, Franziska
author_role author
author2 Meysonnat, Aline
Rosales, Francisco
Cebotari, Victor
Gassmann, Franziska
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Dietrich, Stephan
Meysonnat, Aline
Rosales, Francisco
Cebotari, Victor
Gassmann, Franziska
dc.subject.en_EN.fl_str_mv Flooding
Human families
Child health
Child marriage
Machine learning
India
Bangladesh
Asia
Nepal
Pakistan
topic Flooding
Human families
Child health
Child marriage
Machine learning
India
Bangladesh
Asia
Nepal
Pakistan
Inundaciones
Familias humanas
Salud infantil
Matrimonio infantil
Aprendizaje automático
India
Bangladesh
Asia
Nepal
Pakistán
https://purl.org/pe-repo/ocde/ford#3.03.12
dc.subject.es_ES.fl_str_mv Inundaciones
Familias humanas
Salud infantil
Matrimonio infantil
Aprendizaje automático
India
Bangladesh
Asia
Nepal
Pakistán
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.03.12
description Globally, 21 percent of young women are married before their 18th birthday. Despite some progress in addressing child marriage, it remains a widespread practice, in particular in South Asia. While household predictors of child marriage have been studied extensively in the literature, the evidence base on macro-economic factors contributing to child marriage and models that predict where child marriage cases are most likely to occur remains limited. In this paper we aim to fill this gap and explore region-level indicators to predict the persistence of child marriage in four countries in South Asia, namely Bangladesh, India, Nepal and Pakistan. We apply machine learning techniques to child marriage data and develop a prediction model that relies largely on regional and local inputs such as droughts, floods, population growth and nightlight data to model the incidence of child marriages. We find that our gradient boosting model is able to identify a large proportion of the true child marriage cases and correctly classifies 77% of the true marriage cases, with a higher accuracy in Bangladesh (92% of the cases) and a lower accuracy in Nepal (70% of cases). In addition, all countries contain in their top 10 variables for classification nighttime light growth, a shock index of drought over the previous and the last two years and the regional level of education, suggesting that income shocks, regional economic activity and regional education levels play a significant role in predicting child marriage. Given the accuracy of the model to predict child marriage, our model is a valuable tool to support policy design in countries where household-level data remains limited.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-15T12:50:14Z
dc.date.available.none.fl_str_mv 2022-10-15T12:50:14Z
dc.date.issued.fl_str_mv 2022-09-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Dietrich, S., Meysonnat, A., Rosales, F., Cebotari, V., & Gassmann, F. (2022). Economic development, weather shocks and child marriage in South Asia: a machine learning approach. PLoS ONE 17(9), e0271373. https://doi.org/10.1371/journal.pone.0271373
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/3147
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1371/journal.pone.0271373
identifier_str_mv Dietrich, S., Meysonnat, A., Rosales, F., Cebotari, V., & Gassmann, F. (2022). Economic development, weather shocks and child marriage in South Asia: a machine learning approach. PLoS ONE 17(9), e0271373. https://doi.org/10.1371/journal.pone.0271373
url https://hdl.handle.net/20.500.12640/3147
https://doi.org/10.1371/journal.pone.0271373
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1932-6203
dc.relation.uri.none.fl_str_mv https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271373
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Public Library of Science (PLoS)
dc.publisher.country.none.fl_str_mv US
publisher.none.fl_str_mv Public Library of Science (PLoS)
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/a03b2ec2-6a4c-4a37-8ee1-e2525715283c/download
https://repositorio.esan.edu.pe/bitstreams/55d2c0e7-b7db-4821-9b38-60d4fb1ea983/download
https://repositorio.esan.edu.pe/bitstreams/f965e41b-dfe3-4a81-b8eb-fda6f55b8a19/download
https://repositorio.esan.edu.pe/bitstreams/589f18e9-fc6a-4838-b8ae-0669ccbcc725/download
bitstream.checksum.fl_str_mv 07c941da0e44f53562ab09502aff25a8
911791e64698c22e1684106e3830b1ce
7eb22c7ffea739b74c9735157f7c0980
dd880c1bfd371ee6128cbaacc615a222
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261691720105984
score 13.906393
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).