Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
Descripción del Articulo
Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, consi...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2570 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2570 https://doi.org/10.1109/LAGIRS48042.2020.9165643 |
| Nivel de acceso: | acceso abierto |
| Materia: | water bodies detection PeruSAT-1 remote sensing satellite images Semantic segmentation http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_fbbb4b39689d108b3e9c2a469a37c713 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2570 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| title |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| spellingShingle |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images Gonzalez J. water bodies detection PeruSAT-1 remote sensing satellite images Semantic segmentation http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| title_full |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| title_fullStr |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| title_full_unstemmed |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| title_sort |
Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images |
| author |
Gonzalez J. |
| author_facet |
Gonzalez J. Sankaran K. Ayma V. Beltran C. |
| author_role |
author |
| author2 |
Sankaran K. Ayma V. Beltran C. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Gonzalez J. Sankaran K. Ayma V. Beltran C. |
| dc.subject.none.fl_str_mv |
water bodies detection |
| topic |
water bodies detection PeruSAT-1 remote sensing satellite images Semantic segmentation http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
PeruSAT-1 remote sensing satellite images Semantic segmentation |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2570 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/LAGIRS48042.2020.9165643 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85091640667 |
| url |
https://hdl.handle.net/20.500.12390/2570 https://doi.org/10.1109/LAGIRS48042.2020.9165643 |
| identifier_str_mv |
2-s2.0-85091640667 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedings |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883060225474560 |
| spelling |
Publicationrp06606600rp06607600rp06439600rp06440600Gonzalez J.Sankaran K.Ayma V.Beltran C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2570https://doi.org/10.1109/LAGIRS48042.2020.91656432-s2.0-85091640667Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedingsinfo:eu-repo/semantics/openAccesswater bodies detectionPeruSAT-1-1remote sensing-1satellite images-1Semantic segmentation-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Imagesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2570oai:repositorio.concytec.gob.pe:20.500.12390/25702024-05-30 16:09:27.345http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="1b98c2c3-edaf-4fe1-a9b0-a5ee001c6b1d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images</Title> <PublishedIn> <Publication> <Title>2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedings</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/LAGIRS48042.2020.9165643</DOI> <SCP-Number>2-s2.0-85091640667</SCP-Number> <Authors> <Author> <DisplayName>Gonzalez J.</DisplayName> <Person id="rp06606" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sankaran K.</DisplayName> <Person id="rp06607" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ayma V.</DisplayName> <Person id="rp06439" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Beltran C.</DisplayName> <Person id="rp06440" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>water bodies detection</Keyword> <Keyword>PeruSAT-1</Keyword> <Keyword>remote sensing</Keyword> <Keyword>satellite images</Keyword> <Keyword>Semantic segmentation</Keyword> <Abstract>Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.43463 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).