Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images

Descripción del Articulo

Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, consi...

Descripción completa

Detalles Bibliográficos
Autores: Gonzalez J., Sankaran K., Ayma V., Beltran C.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2570
Enlace del recurso:https://hdl.handle.net/20.500.12390/2570
https://doi.org/10.1109/LAGIRS48042.2020.9165643
Nivel de acceso:acceso abierto
Materia:water bodies detection
PeruSAT-1
remote sensing
satellite images
Semantic segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_fbbb4b39689d108b3e9c2a469a37c713
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2570
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
title Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
spellingShingle Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
Gonzalez J.
water bodies detection
PeruSAT-1
remote sensing
satellite images
Semantic segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
title_full Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
title_fullStr Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
title_full_unstemmed Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
title_sort Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images
author Gonzalez J.
author_facet Gonzalez J.
Sankaran K.
Ayma V.
Beltran C.
author_role author
author2 Sankaran K.
Ayma V.
Beltran C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Gonzalez J.
Sankaran K.
Ayma V.
Beltran C.
dc.subject.none.fl_str_mv water bodies detection
topic water bodies detection
PeruSAT-1
remote sensing
satellite images
Semantic segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv PeruSAT-1
remote sensing
satellite images
Semantic segmentation
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2570
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/LAGIRS48042.2020.9165643
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85091640667
url https://hdl.handle.net/20.500.12390/2570
https://doi.org/10.1109/LAGIRS48042.2020.9165643
identifier_str_mv 2-s2.0-85091640667
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv 2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedings
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883060225474560
spelling Publicationrp06606600rp06607600rp06439600rp06440600Gonzalez J.Sankaran K.Ayma V.Beltran C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2570https://doi.org/10.1109/LAGIRS48042.2020.91656432-s2.0-85091640667Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedingsinfo:eu-repo/semantics/openAccesswater bodies detectionPeruSAT-1-1remote sensing-1satellite images-1Semantic segmentation-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Imagesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2570oai:repositorio.concytec.gob.pe:20.500.12390/25702024-05-30 16:09:27.345http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="1b98c2c3-edaf-4fe1-a9b0-a5ee001c6b1d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite&apos;s Images</Title> <PublishedIn> <Publication> <Title>2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedings</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/LAGIRS48042.2020.9165643</DOI> <SCP-Number>2-s2.0-85091640667</SCP-Number> <Authors> <Author> <DisplayName>Gonzalez J.</DisplayName> <Person id="rp06606" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sankaran K.</DisplayName> <Person id="rp06607" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ayma V.</DisplayName> <Person id="rp06439" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Beltran C.</DisplayName> <Person id="rp06440" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>water bodies detection</Keyword> <Keyword>PeruSAT-1</Keyword> <Keyword>remote sensing</Keyword> <Keyword>satellite images</Keyword> <Keyword>Semantic segmentation</Keyword> <Abstract>Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.43463
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).