Towards an Automatic Generation of Persuasive Messages
Descripción del Articulo
Acknowledgments. This work has been supported by CONCYTEC - FONDECYT within the framework of the call E038-01 contract 014-2019. N. Condori Fernandez wish also to thank Datos 4.0 (TIN2016-78011-C4-1-R) funded by MINECO-AEI/FEDER-UE.
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3071 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/3071 https://doi.org/10.1007/978-3-030-79460-6_5 |
| Nivel de acceso: | acceso abierto |
| Materia: | Text generation Persuasive message SentiGAN https://purl.org/pe-repo/ocde/ford#2.02.02 |
| id |
CONC_f32cc41faf879d0e5c3443c5bb493e9c |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3071 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp08862600rp02079600rp06523600Lipa-Urbina E.Condori-Fernandez N.Suni-Lopez F.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3071https://doi.org/10.1007/978-3-030-79460-6_52-s2.0-85111997254Acknowledgments. This work has been supported by CONCYTEC - FONDECYT within the framework of the call E038-01 contract 014-2019. N. Condori Fernandez wish also to thank Datos 4.0 (TIN2016-78011-C4-1-R) funded by MINECO-AEI/FEDER-UE.In the last decades, the Natural Language Generation (NLG) methods have been improved to generate text automatically. However, based on the literature review, there are not works on generating text for persuading people. In this paper, we propose to use the SentiGAN framework to generate messages that are classified into levels of persuasiveness. And, we run an experiment using the Microtext dataset for the training phase. Our preliminary results show 0.78 of novelty on average, and 0.57 of diversity in the generated messages. © 2021, Springer Nature Switzerland AG.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer Science and Business Media Deutschland GmbHLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessText generationPersuasive message-1SentiGAN-1https://purl.org/pe-repo/ocde/ford#2.02.02-1Towards an Automatic Generation of Persuasive Messagesinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3071oai:repositorio.concytec.gob.pe:20.500.12390/30712024-05-30 16:13:44.316http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="0fa22533-30fa-4812-bd4a-838c1149779c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Towards an Automatic Generation of Persuasive Messages</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-79460-6_5</DOI> <SCP-Number>2-s2.0-85111997254</SCP-Number> <Authors> <Author> <DisplayName>Lipa-Urbina E.</DisplayName> <Person id="rp08862" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori-Fernandez N.</DisplayName> <Person id="rp02079" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Suni-Lopez F.</DisplayName> <Person id="rp06523" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media Deutschland GmbH</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Text generation</Keyword> <Keyword>Persuasive message</Keyword> <Keyword>SentiGAN</Keyword> <Abstract>In the last decades, the Natural Language Generation (NLG) methods have been improved to generate text automatically. However, based on the literature review, there are not works on generating text for persuading people. In this paper, we propose to use the SentiGAN framework to generate messages that are classified into levels of persuasiveness. And, we run an experiment using the Microtext dataset for the training phase. Our preliminary results show 0.78 of novelty on average, and 0.57 of diversity in the generated messages. © 2021, Springer Nature Switzerland AG.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Towards an Automatic Generation of Persuasive Messages |
| title |
Towards an Automatic Generation of Persuasive Messages |
| spellingShingle |
Towards an Automatic Generation of Persuasive Messages Lipa-Urbina E. Text generation Persuasive message SentiGAN https://purl.org/pe-repo/ocde/ford#2.02.02 |
| title_short |
Towards an Automatic Generation of Persuasive Messages |
| title_full |
Towards an Automatic Generation of Persuasive Messages |
| title_fullStr |
Towards an Automatic Generation of Persuasive Messages |
| title_full_unstemmed |
Towards an Automatic Generation of Persuasive Messages |
| title_sort |
Towards an Automatic Generation of Persuasive Messages |
| author |
Lipa-Urbina E. |
| author_facet |
Lipa-Urbina E. Condori-Fernandez N. Suni-Lopez F. |
| author_role |
author |
| author2 |
Condori-Fernandez N. Suni-Lopez F. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Lipa-Urbina E. Condori-Fernandez N. Suni-Lopez F. |
| dc.subject.none.fl_str_mv |
Text generation |
| topic |
Text generation Persuasive message SentiGAN https://purl.org/pe-repo/ocde/ford#2.02.02 |
| dc.subject.es_PE.fl_str_mv |
Persuasive message SentiGAN |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.02 |
| description |
Acknowledgments. This work has been supported by CONCYTEC - FONDECYT within the framework of the call E038-01 contract 014-2019. N. Condori Fernandez wish also to thank Datos 4.0 (TIN2016-78011-C4-1-R) funded by MINECO-AEI/FEDER-UE. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3071 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-79460-6_5 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85111997254 |
| url |
https://hdl.handle.net/20.500.12390/3071 https://doi.org/10.1007/978-3-030-79460-6_5 |
| identifier_str_mv |
2-s2.0-85111997254 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883054911291392 |
| score |
13.870318 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).