A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels

Descripción del Articulo

A quasi-three-dimensional solution for the bending analysis of simply supported orthotropic piezoelectric shallow shell panels subjected to thermal, mechanical and electrical potential is introduced. The mechanical governing equations are derived in term of three-dimensional equilibrium relations an...

Descripción completa

Detalles Bibliográficos
Autores: Monge J.C., Mantari J.L.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2327
Enlace del recurso:https://hdl.handle.net/20.500.12390/2327
https://doi.org/10.1016/j.compstruct.2021.113710
Nivel de acceso:acceso abierto
Materia:Three-dimensional solutions
Differential quadrature method
Equilibrium equations
Fouriers heat conduction equation
Maxwell equations
Shell
http://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_f1b2c63c8ec74922459ea2b5e31151c6
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2327
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
title A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
spellingShingle A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
Monge J.C.
Three-dimensional solutions
Differential quadrature method
Equilibrium equations
Fouriers heat conduction equation
Maxwell equations
Shell
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
title_full A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
title_fullStr A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
title_full_unstemmed A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
title_sort A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels
author Monge J.C.
author_facet Monge J.C.
Mantari J.L.
author_role author
author2 Mantari J.L.
author2_role author
dc.contributor.author.fl_str_mv Monge J.C.
Mantari J.L.
dc.subject.none.fl_str_mv Three-dimensional solutions
topic Three-dimensional solutions
Differential quadrature method
Equilibrium equations
Fouriers heat conduction equation
Maxwell equations
Shell
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Differential quadrature method
Equilibrium equations
Fouriers heat conduction equation
Maxwell equations
Shell
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description A quasi-three-dimensional solution for the bending analysis of simply supported orthotropic piezoelectric shallow shell panels subjected to thermal, mechanical and electrical potential is introduced. The mechanical governing equations are derived in term of three-dimensional equilibrium relations and the classical Maxwell's equations. The trough-the-thickness temperature is modeled by the Fourier's heat conduction equation. The coupled partial differential equations are solved by Navier closed form solutions. The trough-the-thickness profile for electrical potential, temperature profile and displacements is obtained by using a quasi-exact method so-called the differential quadrature method (DQM). Chebyshev polynomials of the third kind are used as the basis functions and the grid thickness domain discretization for the DQM. The interlaminar conditions for transverse stresses, temperature and electrical potential are imposed. The correct traction conditions for transverse stresses and scalar potential function at the top and the bottom are applied. The results for cylindrical, spherical and rectangular plates are presented. The excellent obtained results are compared with layerwise and three-dimensional solutions reported in the literature. © 2021
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2327
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.compstruct.2021.113710
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85102300127
url https://hdl.handle.net/20.500.12390/2327
https://doi.org/10.1016/j.compstruct.2021.113710
identifier_str_mv 2-s2.0-85102300127
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Composite Structures
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883041040728064
spelling Publicationrp05555600rp01200600Monge J.C.Mantari J.L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2327https://doi.org/10.1016/j.compstruct.2021.1137102-s2.0-85102300127A quasi-three-dimensional solution for the bending analysis of simply supported orthotropic piezoelectric shallow shell panels subjected to thermal, mechanical and electrical potential is introduced. The mechanical governing equations are derived in term of three-dimensional equilibrium relations and the classical Maxwell's equations. The trough-the-thickness temperature is modeled by the Fourier's heat conduction equation. The coupled partial differential equations are solved by Navier closed form solutions. The trough-the-thickness profile for electrical potential, temperature profile and displacements is obtained by using a quasi-exact method so-called the differential quadrature method (DQM). Chebyshev polynomials of the third kind are used as the basis functions and the grid thickness domain discretization for the DQM. The interlaminar conditions for transverse stresses, temperature and electrical potential are imposed. The correct traction conditions for transverse stresses and scalar potential function at the top and the bottom are applied. The results for cylindrical, spherical and rectangular plates are presented. The excellent obtained results are compared with layerwise and three-dimensional solutions reported in the literature. © 2021Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdComposite Structuresinfo:eu-repo/semantics/openAccessThree-dimensional solutionsDifferential quadrature method-1Equilibrium equations-1Fouriers heat conduction equation-1Maxwell equations-1Shell-1http://purl.org/pe-repo/ocde/ford#1.01.02-1A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panelsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2327oai:repositorio.concytec.gob.pe:20.500.12390/23272024-05-30 16:07:11.389http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e1e0e878-37be-4d12-a964-af13f4c1f832"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels</Title> <PublishedIn> <Publication> <Title>Composite Structures</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.compstruct.2021.113710</DOI> <SCP-Number>2-s2.0-85102300127</SCP-Number> <Authors> <Author> <DisplayName>Monge J.C.</DisplayName> <Person id="rp05555" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mantari J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Three-dimensional solutions</Keyword> <Keyword>Differential quadrature method</Keyword> <Keyword>Equilibrium equations</Keyword> <Keyword>Fouriers heat conduction equation</Keyword> <Keyword>Maxwell equations</Keyword> <Keyword>Shell</Keyword> <Abstract>A quasi-three-dimensional solution for the bending analysis of simply supported orthotropic piezoelectric shallow shell panels subjected to thermal, mechanical and electrical potential is introduced. The mechanical governing equations are derived in term of three-dimensional equilibrium relations and the classical Maxwell&apos;s equations. The trough-the-thickness temperature is modeled by the Fourier&apos;s heat conduction equation. The coupled partial differential equations are solved by Navier closed form solutions. The trough-the-thickness profile for electrical potential, temperature profile and displacements is obtained by using a quasi-exact method so-called the differential quadrature method (DQM). Chebyshev polynomials of the third kind are used as the basis functions and the grid thickness domain discretization for the DQM. The interlaminar conditions for transverse stresses, temperature and electrical potential are imposed. The correct traction conditions for transverse stresses and scalar potential function at the top and the bottom are applied. The results for cylindrical, spherical and rectangular plates are presented. The excellent obtained results are compared with layerwise and three-dimensional solutions reported in the literature. © 2021</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.413335
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).