A FAIR evaluation of public datasets for stress detection systems
Descripción del Articulo
Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent wit...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2462 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2462 https://doi.org/10.1109/SCCC51225.2020.9281274 |
Nivel de acceso: | acceso abierto |
Materia: | Stress detection Datasets FAIR principles http://purl.org/pe-repo/ocde/ford#3.02.25 |
id |
CONC_ed1396c2663dca7b5a8a09b7e562856b |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2462 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp06242600rp02079600rp06241600rp06240600Cuno A.Condori-Fernandez N.Mendoza A.Lovon W.R.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2462https://doi.org/10.1109/SCCC51225.2020.92812742-s2.0-85098624680Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle these findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE Computer SocietyProceedings - International Conference of the Chilean Computer Science Society, SCCCinfo:eu-repo/semantics/openAccessStress detectionDatasets-1FAIR principles-1http://purl.org/pe-repo/ocde/ford#3.02.25-1A FAIR evaluation of public datasets for stress detection systemsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2462oai:repositorio.concytec.gob.pe:20.500.12390/24622024-05-30 16:08:26.115http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="bd3f5bf5-ca8f-40ce-92b3-8cecb9517bcb"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A FAIR evaluation of public datasets for stress detection systems</Title> <PublishedIn> <Publication> <Title>Proceedings - International Conference of the Chilean Computer Science Society, SCCC</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/SCCC51225.2020.9281274</DOI> <SCP-Number>2-s2.0-85098624680</SCP-Number> <Authors> <Author> <DisplayName>Cuno A.</DisplayName> <Person id="rp06242" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori-Fernandez N.</DisplayName> <Person id="rp02079" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mendoza A.</DisplayName> <Person id="rp06241" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lovon W.R.</DisplayName> <Person id="rp06240" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE Computer Society</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Stress detection</Keyword> <Keyword>Datasets</Keyword> <Keyword>FAIR principles</Keyword> <Abstract>Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle these findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
A FAIR evaluation of public datasets for stress detection systems |
title |
A FAIR evaluation of public datasets for stress detection systems |
spellingShingle |
A FAIR evaluation of public datasets for stress detection systems Cuno A. Stress detection Datasets FAIR principles http://purl.org/pe-repo/ocde/ford#3.02.25 |
title_short |
A FAIR evaluation of public datasets for stress detection systems |
title_full |
A FAIR evaluation of public datasets for stress detection systems |
title_fullStr |
A FAIR evaluation of public datasets for stress detection systems |
title_full_unstemmed |
A FAIR evaluation of public datasets for stress detection systems |
title_sort |
A FAIR evaluation of public datasets for stress detection systems |
author |
Cuno A. |
author_facet |
Cuno A. Condori-Fernandez N. Mendoza A. Lovon W.R. |
author_role |
author |
author2 |
Condori-Fernandez N. Mendoza A. Lovon W.R. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cuno A. Condori-Fernandez N. Mendoza A. Lovon W.R. |
dc.subject.none.fl_str_mv |
Stress detection |
topic |
Stress detection Datasets FAIR principles http://purl.org/pe-repo/ocde/ford#3.02.25 |
dc.subject.es_PE.fl_str_mv |
Datasets FAIR principles |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#3.02.25 |
description |
Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle these findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community. © 2020 IEEE. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2462 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/SCCC51225.2020.9281274 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85098624680 |
url |
https://hdl.handle.net/20.500.12390/2462 https://doi.org/10.1109/SCCC51225.2020.9281274 |
identifier_str_mv |
2-s2.0-85098624680 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings - International Conference of the Chilean Computer Science Society, SCCC |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175727365226496 |
score |
13.274781 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).