Object detection in videos using principal component pursuit and convolutional neural networks

Descripción del Articulo

Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) f...

Descripción completa

Detalles Bibliográficos
Autor: Tejada Gamero, Enrique David
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1545
Enlace del recurso:https://hdl.handle.net/20.500.12390/1545
Nivel de acceso:acceso abierto
Materia:Visión por computadoras
Reconocimiento de imágenes
Redes neuronales--Aplicaciones
https://purl.org/pe-repo/ocde/ford#2.02.05
id CONC_e8b0e647ea41879ff26fd047ae093c8a
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1545
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Object detection in videos using principal component pursuit and convolutional neural networks
title Object detection in videos using principal component pursuit and convolutional neural networks
spellingShingle Object detection in videos using principal component pursuit and convolutional neural networks
Tejada Gamero, Enrique David
Visión por computadoras
Reconocimiento de imágenes
Redes neuronales--Aplicaciones
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Object detection in videos using principal component pursuit and convolutional neural networks
title_full Object detection in videos using principal component pursuit and convolutional neural networks
title_fullStr Object detection in videos using principal component pursuit and convolutional neural networks
title_full_unstemmed Object detection in videos using principal component pursuit and convolutional neural networks
title_sort Object detection in videos using principal component pursuit and convolutional neural networks
author Tejada Gamero, Enrique David
author_facet Tejada Gamero, Enrique David
author_role author
dc.contributor.author.fl_str_mv Tejada Gamero, Enrique David
dc.subject.none.fl_str_mv Visión por computadoras
topic Visión por computadoras
Reconocimiento de imágenes
Redes neuronales--Aplicaciones
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.es_PE.fl_str_mv Reconocimiento de imágenes
Redes neuronales--Aplicaciones
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1545
url https://hdl.handle.net/20.500.12390/1545
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883037476618240
spelling Publicationrp04385600Tejada Gamero, Enrique David2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1545Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Visión por computadorasReconocimiento de imágenes-1Redes neuronales--Aplicaciones-1https://purl.org/pe-repo/ocde/ford#2.02.05-1Object detection in videos using principal component pursuit and convolutional neural networksinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1545oai:repositorio.concytec.gob.pe:20.500.12390/15452024-05-30 16:04:10.668https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="db2cd72f-50f8-46a9-b6d4-f46536653038"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Object detection in videos using principal component pursuit and convolutional neural networks</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <Authors> <Author> <DisplayName>Tejada Gamero, Enrique David</DisplayName> <Person id="rp04385" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Visión por computadoras</Keyword> <Keyword>Reconocimiento de imágenes</Keyword> <Keyword>Redes neuronales--Aplicaciones</Keyword> <Abstract>Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.4721
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).