Object detection in videos using principal component pursuit and convolutional neural networks
Descripción del Articulo
Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) f...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1545 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1545 |
Nivel de acceso: | acceso abierto |
Materia: | Visión por computadoras Reconocimiento de imágenes Redes neuronales--Aplicaciones https://purl.org/pe-repo/ocde/ford#2.02.05 |
id |
CONC_e8b0e647ea41879ff26fd047ae093c8a |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1545 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Object detection in videos using principal component pursuit and convolutional neural networks |
title |
Object detection in videos using principal component pursuit and convolutional neural networks |
spellingShingle |
Object detection in videos using principal component pursuit and convolutional neural networks Tejada Gamero, Enrique David Visión por computadoras Reconocimiento de imágenes Redes neuronales--Aplicaciones https://purl.org/pe-repo/ocde/ford#2.02.05 |
title_short |
Object detection in videos using principal component pursuit and convolutional neural networks |
title_full |
Object detection in videos using principal component pursuit and convolutional neural networks |
title_fullStr |
Object detection in videos using principal component pursuit and convolutional neural networks |
title_full_unstemmed |
Object detection in videos using principal component pursuit and convolutional neural networks |
title_sort |
Object detection in videos using principal component pursuit and convolutional neural networks |
author |
Tejada Gamero, Enrique David |
author_facet |
Tejada Gamero, Enrique David |
author_role |
author |
dc.contributor.author.fl_str_mv |
Tejada Gamero, Enrique David |
dc.subject.none.fl_str_mv |
Visión por computadoras |
topic |
Visión por computadoras Reconocimiento de imágenes Redes neuronales--Aplicaciones https://purl.org/pe-repo/ocde/ford#2.02.05 |
dc.subject.es_PE.fl_str_mv |
Reconocimiento de imágenes Redes neuronales--Aplicaciones |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.05 |
description |
Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1545 |
url |
https://hdl.handle.net/20.500.12390/1545 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883037476618240 |
spelling |
Publicationrp04385600Tejada Gamero, Enrique David2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1545Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Visión por computadorasReconocimiento de imágenes-1Redes neuronales--Aplicaciones-1https://purl.org/pe-repo/ocde/ford#2.02.05-1Object detection in videos using principal component pursuit and convolutional neural networksinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1545oai:repositorio.concytec.gob.pe:20.500.12390/15452024-05-30 16:04:10.668https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="db2cd72f-50f8-46a9-b6d4-f46536653038"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Object detection in videos using principal component pursuit and convolutional neural networks</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <Authors> <Author> <DisplayName>Tejada Gamero, Enrique David</DisplayName> <Person id="rp04385" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Visión por computadoras</Keyword> <Keyword>Reconocimiento de imágenes</Keyword> <Keyword>Redes neuronales--Aplicaciones</Keyword> <Abstract>Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit, PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in order to improve the overall performance of detection and classification of, specifically, the moving objects.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.4721 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).