Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies

Descripción del Articulo

Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging dir...

Descripción completa

Detalles Bibliográficos
Autores: Ormachea J., Castaneda B., Parker K.J.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2772
Enlace del recurso:https://hdl.handle.net/20.500.12390/2772
https://doi.org/10.1016/j.ultrasmedbio.2018.01.011
Nivel de acceso:acceso abierto
Materia:Ultrasound
Elastography
Reverberant fields
Shear wave speed estimators
Shear waves
Tissue stiffness
http://purl.org/pe-repo/ocde/ford#3.04.02
id CONC_e050fd55dc9b28827ed071cc524a1ee3
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2772
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
title Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
spellingShingle Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
Ormachea J.
Ultrasound
Elastography
Reverberant fields
Shear wave speed estimators
Shear waves
Tissue stiffness
http://purl.org/pe-repo/ocde/ford#3.04.02
title_short Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
title_full Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
title_fullStr Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
title_full_unstemmed Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
title_sort Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies
author Ormachea J.
author_facet Ormachea J.
Castaneda B.
Parker K.J.
author_role author
author2 Castaneda B.
Parker K.J.
author2_role author
author
dc.contributor.author.fl_str_mv Ormachea J.
Castaneda B.
Parker K.J.
dc.subject.none.fl_str_mv Ultrasound
topic Ultrasound
Elastography
Reverberant fields
Shear wave speed estimators
Shear waves
Tissue stiffness
http://purl.org/pe-repo/ocde/ford#3.04.02
dc.subject.es_PE.fl_str_mv Elastography
Reverberant fields
Shear wave speed estimators
Shear waves
Tissue stiffness
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#3.04.02
description Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. © 2018 World Federation for Ultrasound in Medicine and Biology
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2772
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ultrasmedbio.2018.01.011
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85042186531
url https://hdl.handle.net/20.500.12390/2772
https://doi.org/10.1016/j.ultrasmedbio.2018.01.011
identifier_str_mv 2-s2.0-85042186531
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Ultrasound in Medicine and Biology
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier USA
publisher.none.fl_str_mv Elsevier USA
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175610303250432
spelling Publicationrp06354600rp05402600rp01308600Ormachea J.Castaneda B.Parker K.J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/2772https://doi.org/10.1016/j.ultrasmedbio.2018.01.0112-s2.0-85042186531Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. © 2018 World Federation for Ultrasound in Medicine and BiologyFondo Nacional de Desarrollo Científico y Tecnológico - FondecytengElsevier USAUltrasound in Medicine and Biologyinfo:eu-repo/semantics/openAccessUltrasoundElastography-1Reverberant fields-1Shear wave speed estimators-1Shear waves-1Tissue stiffness-1http://purl.org/pe-repo/ocde/ford#3.04.02-1Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studiesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2772oai:repositorio.concytec.gob.pe:20.500.12390/27722024-05-30 15:25:33.441http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="7a6c8c5e-3337-47d9-9531-10e808a1fe40"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies</Title> <PublishedIn> <Publication> <Title>Ultrasound in Medicine and Biology</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1016/j.ultrasmedbio.2018.01.011</DOI> <SCP-Number>2-s2.0-85042186531</SCP-Number> <Authors> <Author> <DisplayName>Ormachea J.</DisplayName> <Person id="rp06354" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Castaneda B.</DisplayName> <Person id="rp05402" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Parker K.J.</DisplayName> <Person id="rp01308" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier USA</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Ultrasound</Keyword> <Keyword>Elastography</Keyword> <Keyword>Reverberant fields</Keyword> <Keyword>Shear wave speed estimators</Keyword> <Keyword>Shear waves</Keyword> <Keyword>Tissue stiffness</Keyword> <Abstract>Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. © 2018 World Federation for Ultrasound in Medicine and Biology</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.461011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).