Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles

Descripción del Articulo

An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have bee...

Descripción completa

Detalles Bibliográficos
Autores: Medrano L.R., Landauro C.V., Rojas-Tapia J.
Formato: artículo
Fecha de Publicación:2014
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/651
Enlace del recurso:https://hdl.handle.net/20.500.12390/651
https://doi.org/10.1016/j.cplett.2014.08.044
Nivel de acceso:acceso abierto
Materia:Silver
Cooling
Metal nanoparticles
Molecular dynamics
Cooling rates
Copper nanoparticles
Critical cooling rate
Metallic nanoparticles
Molecular dynamics simulations
Physical quantities
Scaling theories
id CONC_df4da9cf060c47148fd00adfb4fd00a5
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/651
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
title Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
spellingShingle Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
Medrano L.R.
Silver
Cooling
Metal nanoparticles
Molecular dynamics
Cooling rates
Copper nanoparticles
Critical cooling rate
Metallic nanoparticles
Molecular dynamics simulations
Physical quantities
Scaling theories
title_short Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
title_full Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
title_fullStr Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
title_full_unstemmed Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
title_sort Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
author Medrano L.R.
author_facet Medrano L.R.
Landauro C.V.
Rojas-Tapia J.
author_role author
author2 Landauro C.V.
Rojas-Tapia J.
author2_role author
author
dc.contributor.author.fl_str_mv Medrano L.R.
Landauro C.V.
Rojas-Tapia J.
dc.subject.none.fl_str_mv Silver
topic Silver
Cooling
Metal nanoparticles
Molecular dynamics
Cooling rates
Copper nanoparticles
Critical cooling rate
Metallic nanoparticles
Molecular dynamics simulations
Physical quantities
Scaling theories
dc.subject.es_PE.fl_str_mv Cooling
Metal nanoparticles
Molecular dynamics
Cooling rates
Copper nanoparticles
Critical cooling rate
Metallic nanoparticles
Molecular dynamics simulations
Physical quantities
Scaling theories
description An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/651
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.cplett.2014.08.044
dc.identifier.scopus.none.fl_str_mv 2-s2.0-84906848982
url https://hdl.handle.net/20.500.12390/651
https://doi.org/10.1016/j.cplett.2014.08.044
identifier_str_mv 2-s2.0-84906848982
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Chemical Physics Letters
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883020705693696
spelling Publicationrp01370600rp00840500rp01371600Medrano L.R.Landauro C.V.Rojas-Tapia J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2014https://hdl.handle.net/20.500.12390/651https://doi.org/10.1016/j.cplett.2014.08.0442-s2.0-84906848982An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevierChemical Physics Lettersinfo:eu-repo/semantics/openAccessSilverCooling-1Metal nanoparticles-1Molecular dynamics-1Cooling rates-1Copper nanoparticles-1Critical cooling rate-1Metallic nanoparticles-1Molecular dynamics simulations-1Physical quantities-1Scaling theories-1Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticlesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/651oai:repositorio.concytec.gob.pe:20.500.12390/6512025-09-22 14:40:24.176http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b84e2504-e924-4d55-a638-f4f0db004a1f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles</Title> <PublishedIn> <Publication> <Title>Chemical Physics Letters</Title> </Publication> </PublishedIn> <PublicationDate>2014</PublicationDate> <DOI>https://doi.org/10.1016/j.cplett.2014.08.044</DOI> <SCP-Number>2-s2.0-84906848982</SCP-Number> <Authors> <Author> <DisplayName>Medrano L.R.</DisplayName> <Person id="rp01370" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas-Tapia J.</DisplayName> <Person id="rp01371" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Silver</Keyword> <Keyword>Cooling</Keyword> <Keyword>Metal nanoparticles</Keyword> <Keyword>Molecular dynamics</Keyword> <Keyword>Cooling rates</Keyword> <Keyword>Copper nanoparticles</Keyword> <Keyword>Critical cooling rate</Keyword> <Keyword>Metallic nanoparticles</Keyword> <Keyword>Molecular dynamics simulations</Keyword> <Keyword>Physical quantities</Keyword> <Keyword>Scaling theories</Keyword> <Abstract>An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.887938
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).