Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles
Descripción del Articulo
An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have bee...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2014 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/651 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/651 https://doi.org/10.1016/j.cplett.2014.08.044 |
Nivel de acceso: | acceso abierto |
Materia: | Silver Cooling Metal nanoparticles Molecular dynamics Cooling rates Copper nanoparticles Critical cooling rate Metallic nanoparticles Molecular dynamics simulations Physical quantities Scaling theories |
id |
CONC_df4da9cf060c47148fd00adfb4fd00a5 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/651 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
title |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
spellingShingle |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles Medrano L.R. Silver Cooling Metal nanoparticles Molecular dynamics Cooling rates Copper nanoparticles Critical cooling rate Metallic nanoparticles Molecular dynamics simulations Physical quantities Scaling theories |
title_short |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
title_full |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
title_fullStr |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
title_full_unstemmed |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
title_sort |
Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles |
author |
Medrano L.R. |
author_facet |
Medrano L.R. Landauro C.V. Rojas-Tapia J. |
author_role |
author |
author2 |
Landauro C.V. Rojas-Tapia J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Medrano L.R. Landauro C.V. Rojas-Tapia J. |
dc.subject.none.fl_str_mv |
Silver |
topic |
Silver Cooling Metal nanoparticles Molecular dynamics Cooling rates Copper nanoparticles Critical cooling rate Metallic nanoparticles Molecular dynamics simulations Physical quantities Scaling theories |
dc.subject.es_PE.fl_str_mv |
Cooling Metal nanoparticles Molecular dynamics Cooling rates Copper nanoparticles Critical cooling rate Metallic nanoparticles Molecular dynamics simulations Physical quantities Scaling theories |
description |
An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate. |
publishDate |
2014 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/651 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.cplett.2014.08.044 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84906848982 |
url |
https://hdl.handle.net/20.500.12390/651 https://doi.org/10.1016/j.cplett.2014.08.044 |
identifier_str_mv |
2-s2.0-84906848982 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Chemical Physics Letters |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883020705693696 |
spelling |
Publicationrp01370600rp00840500rp01371600Medrano L.R.Landauro C.V.Rojas-Tapia J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2014https://hdl.handle.net/20.500.12390/651https://doi.org/10.1016/j.cplett.2014.08.0442-s2.0-84906848982An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevierChemical Physics Lettersinfo:eu-repo/semantics/openAccessSilverCooling-1Metal nanoparticles-1Molecular dynamics-1Cooling rates-1Copper nanoparticles-1Critical cooling rate-1Metallic nanoparticles-1Molecular dynamics simulations-1Physical quantities-1Scaling theories-1Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticlesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/651oai:repositorio.concytec.gob.pe:20.500.12390/6512025-09-22 14:40:24.176http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b84e2504-e924-4d55-a638-f4f0db004a1f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles</Title> <PublishedIn> <Publication> <Title>Chemical Physics Letters</Title> </Publication> </PublishedIn> <PublicationDate>2014</PublicationDate> <DOI>https://doi.org/10.1016/j.cplett.2014.08.044</DOI> <SCP-Number>2-s2.0-84906848982</SCP-Number> <Authors> <Author> <DisplayName>Medrano L.R.</DisplayName> <Person id="rp01370" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas-Tapia J.</DisplayName> <Person id="rp01371" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Silver</Keyword> <Keyword>Cooling</Keyword> <Keyword>Metal nanoparticles</Keyword> <Keyword>Molecular dynamics</Keyword> <Keyword>Cooling rates</Keyword> <Keyword>Copper nanoparticles</Keyword> <Keyword>Critical cooling rate</Keyword> <Keyword>Metallic nanoparticles</Keyword> <Keyword>Molecular dynamics simulations</Keyword> <Keyword>Physical quantities</Keyword> <Keyword>Scaling theories</Keyword> <Abstract>An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.887938 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).