Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia

Descripción del Articulo

The Huari Huari deposit, Potosí Department in SW Bolivia, hosts polymetallic stratiform and vein mineralization of Miocene age with significant concentrations of the critical metal indium (In). Vein mineralization records document early crystallization of quartz and cassiterite followed by prominent...

Descripción completa

Detalles Bibliográficos
Autores: Torro, Lisard, Caries Melgarejo, Joan, Gemmrich, Laura, Mollinedo, Diva, Cazorla, Malena, Martinez, Alvaro, Pujol-Sola, Nuria, Farre-de-Pablo, Julia, Camprubi, Antoni, Artiaga, David, Torres, Belen, Alfonso, Pura, Arce, Osvaldo
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2828
Enlace del recurso:https://hdl.handle.net/20.500.12390/2828
https://doi.org/10.3390/min9050304
Nivel de acceso:acceso abierto
Materia:Geotechnical Engineering and Engineering Geology
Geology
http://purl.org/pe-repo/ocde/ford#2.03.04
id CONC_deeb94ff11c83fab77aee8deea1381e2
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2828
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
title Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
spellingShingle Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
Torro, Lisard
Geotechnical Engineering and Engineering Geology
Geology
http://purl.org/pe-repo/ocde/ford#2.03.04
title_short Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
title_full Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
title_fullStr Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
title_full_unstemmed Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
title_sort Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia
author Torro, Lisard
author_facet Torro, Lisard
Caries Melgarejo, Joan
Gemmrich, Laura
Mollinedo, Diva
Cazorla, Malena
Martinez, Alvaro
Pujol-Sola, Nuria
Farre-de-Pablo, Julia
Camprubi, Antoni
Artiaga, David
Torres, Belen
Alfonso, Pura
Arce, Osvaldo
author_role author
author2 Caries Melgarejo, Joan
Gemmrich, Laura
Mollinedo, Diva
Cazorla, Malena
Martinez, Alvaro
Pujol-Sola, Nuria
Farre-de-Pablo, Julia
Camprubi, Antoni
Artiaga, David
Torres, Belen
Alfonso, Pura
Arce, Osvaldo
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Torro, Lisard
Caries Melgarejo, Joan
Gemmrich, Laura
Mollinedo, Diva
Cazorla, Malena
Martinez, Alvaro
Pujol-Sola, Nuria
Farre-de-Pablo, Julia
Camprubi, Antoni
Artiaga, David
Torres, Belen
Alfonso, Pura
Arce, Osvaldo
dc.subject.none.fl_str_mv Geotechnical Engineering and Engineering Geology
topic Geotechnical Engineering and Engineering Geology
Geology
http://purl.org/pe-repo/ocde/ford#2.03.04
dc.subject.es_PE.fl_str_mv Geology
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.03.04
description The Huari Huari deposit, Potosí Department in SW Bolivia, hosts polymetallic stratiform and vein mineralization of Miocene age with significant concentrations of the critical metal indium (In). Vein mineralization records document early crystallization of quartz and cassiterite followed by prominent associations of sulfides and sulfosalts. The earliest sulfide was arsenopyrite, followed by pyrrhotite, and progressively giving way to pyrite as the main iron sulfide, whereas C-u-Ag-Pb sulfosalts constitute late hypogene associations. Sphalerite is the chief ore mineral, and its crystallization is extended during most of the mineralization lifespan as evidenced by its initial cocrystallization with pyrrhotine, then with pyrite, and finally with Ag-Pb sulfosalts. The composition of sphalerite varies from early to late generations with a continuous decrease in FeS that attests to a decrease in temperature, which is constrained to vary from ~450 to <200 °C, and/or an increase in f(S2), both congruent with the described paragenetic sequence. Indium concentrated mostly in the structure of Fe-rich sphalerite (up to 3.49 wt. %) and stannite (up to 2.64 wt. %) as limited solid solutions with roquesite in the (Zn,Fe)S-Cu2FeSnS4-CuInS2pseudoternary system. In sphalerite, In shows a strong positive correlation with Cu at Cu/In = 1, suggesting its incorporation via a (Cu+ + In3+) ? 2Zn2+ coupled substitution, and it does not correlate with Fe. In stannite, In shows a moderate, negative correlation with Cu and Sn, and an In3+ ? (Cu+ + 1/2 Sn4+) coupled substitution is suggested. Coexisting sphalerite and stannite yielded the highest In concentrations and crystallized at temperatures between 350 and 250 °C. Copper activity probably played a major role in the accumulation of In in the structure of sphalerite since In-bearing sphalerite coexisted with the deposition of stannite, shows high concentrations of Cu (up to 0.13 atoms per formula unit (a.p.f.u.)) in its structure, and hosts exsolutions of stannite and chalcopyrite. Distribution on the district scale of In suggests an input of hydrothermal fluids richer in Cu in the central position of the mineralizing system, represented by the Antón Bravo vein. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2828
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/min9050304
url https://hdl.handle.net/20.500.12390/2828
https://doi.org/10.3390/min9050304
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv MINERALS
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175783259570176
spelling Publicationrp07661600rp07669600rp07660600rp07664600rp07674600rp07667600rp07681600rp07679600rp07665600rp07668600rp07672600rp07673600rp07680600Torro, LisardCaries Melgarejo, JoanGemmrich, LauraMollinedo, DivaCazorla, MalenaMartinez, AlvaroPujol-Sola, NuriaFarre-de-Pablo, JuliaCamprubi, AntoniArtiaga, DavidTorres, BelenAlfonso, PuraArce, Osvaldo2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2828https://doi.org/10.3390/min9050304The Huari Huari deposit, Potosí Department in SW Bolivia, hosts polymetallic stratiform and vein mineralization of Miocene age with significant concentrations of the critical metal indium (In). Vein mineralization records document early crystallization of quartz and cassiterite followed by prominent associations of sulfides and sulfosalts. The earliest sulfide was arsenopyrite, followed by pyrrhotite, and progressively giving way to pyrite as the main iron sulfide, whereas C-u-Ag-Pb sulfosalts constitute late hypogene associations. Sphalerite is the chief ore mineral, and its crystallization is extended during most of the mineralization lifespan as evidenced by its initial cocrystallization with pyrrhotine, then with pyrite, and finally with Ag-Pb sulfosalts. The composition of sphalerite varies from early to late generations with a continuous decrease in FeS that attests to a decrease in temperature, which is constrained to vary from ~450 to &lt;200 °C, and/or an increase in f(S2), both congruent with the described paragenetic sequence. Indium concentrated mostly in the structure of Fe-rich sphalerite (up to 3.49 wt. %) and stannite (up to 2.64 wt. %) as limited solid solutions with roquesite in the (Zn,Fe)S-Cu2FeSnS4-CuInS2pseudoternary system. In sphalerite, In shows a strong positive correlation with Cu at Cu/In = 1, suggesting its incorporation via a (Cu+ + In3+) ? 2Zn2+ coupled substitution, and it does not correlate with Fe. In stannite, In shows a moderate, negative correlation with Cu and Sn, and an In3+ ? (Cu+ + 1/2 Sn4+) coupled substitution is suggested. Coexisting sphalerite and stannite yielded the highest In concentrations and crystallized at temperatures between 350 and 250 °C. Copper activity probably played a major role in the accumulation of In in the structure of sphalerite since In-bearing sphalerite coexisted with the deposition of stannite, shows high concentrations of Cu (up to 0.13 atoms per formula unit (a.p.f.u.)) in its structure, and hosts exsolutions of stannite and chalcopyrite. Distribution on the district scale of In suggests an input of hydrothermal fluids richer in Cu in the central position of the mineralizing system, represented by the Antón Bravo vein. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGMINERALSinfo:eu-repo/semantics/openAccessGeotechnical Engineering and Engineering GeologyGeology-1http://purl.org/pe-repo/ocde/ford#2.03.04-1Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Boliviainfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2828oai:repositorio.concytec.gob.pe:20.500.12390/28282024-05-30 16:11:48.605http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e024db91-04eb-4eda-a465-5f42649fe508"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, Potosi, Bolivia</Title> <PublishedIn> <Publication> <Title>MINERALS</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.3390/min9050304</DOI> <Authors> <Author> <DisplayName>Torro, Lisard</DisplayName> <Person id="rp07661" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Caries Melgarejo, Joan</DisplayName> <Person id="rp07669" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gemmrich, Laura</DisplayName> <Person id="rp07660" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mollinedo, Diva</DisplayName> <Person id="rp07664" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cazorla, Malena</DisplayName> <Person id="rp07674" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Martinez, Alvaro</DisplayName> <Person id="rp07667" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pujol-Sola, Nuria</DisplayName> <Person id="rp07681" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Farre-de-Pablo, Julia</DisplayName> <Person id="rp07679" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Camprubi, Antoni</DisplayName> <Person id="rp07665" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Artiaga, David</DisplayName> <Person id="rp07668" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Torres, Belen</DisplayName> <Person id="rp07672" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Alfonso, Pura</DisplayName> <Person id="rp07673" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arce, Osvaldo</DisplayName> <Person id="rp07680" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Geotechnical Engineering and Engineering Geology</Keyword> <Keyword>Geology</Keyword> <Abstract>The Huari Huari deposit, Potosí Department in SW Bolivia, hosts polymetallic stratiform and vein mineralization of Miocene age with significant concentrations of the critical metal indium (In). Vein mineralization records document early crystallization of quartz and cassiterite followed by prominent associations of sulfides and sulfosalts. The earliest sulfide was arsenopyrite, followed by pyrrhotite, and progressively giving way to pyrite as the main iron sulfide, whereas C-u-Ag-Pb sulfosalts constitute late hypogene associations. Sphalerite is the chief ore mineral, and its crystallization is extended during most of the mineralization lifespan as evidenced by its initial cocrystallization with pyrrhotine, then with pyrite, and finally with Ag-Pb sulfosalts. The composition of sphalerite varies from early to late generations with a continuous decrease in FeS that attests to a decrease in temperature, which is constrained to vary from ~450 to &amp;lt;200 °C, and/or an increase in f(S2), both congruent with the described paragenetic sequence. Indium concentrated mostly in the structure of Fe-rich sphalerite (up to 3.49 wt. %) and stannite (up to 2.64 wt. %) as limited solid solutions with roquesite in the (Zn,Fe)S-Cu2FeSnS4-CuInS2pseudoternary system. In sphalerite, In shows a strong positive correlation with Cu at Cu/In = 1, suggesting its incorporation via a (Cu+ + In3+) ? 2Zn2+ coupled substitution, and it does not correlate with Fe. In stannite, In shows a moderate, negative correlation with Cu and Sn, and an In3+ ? (Cu+ + 1/2 Sn4+) coupled substitution is suggested. Coexisting sphalerite and stannite yielded the highest In concentrations and crystallized at temperatures between 350 and 250 °C. Copper activity probably played a major role in the accumulation of In in the structure of sphalerite since In-bearing sphalerite coexisted with the deposition of stannite, shows high concentrations of Cu (up to 0.13 atoms per formula unit (a.p.f.u.)) in its structure, and hosts exsolutions of stannite and chalcopyrite. Distribution on the district scale of In suggests an input of hydrothermal fluids richer in Cu in the central position of the mineralizing system, represented by the Antón Bravo vein. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.243791
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).