Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites

Descripción del Articulo

The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this p...

Descripción completa

Detalles Bibliográficos
Autores: MANTARI J.L., RAMOS I.A., MONGE J.C.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/715
Enlace del recurso:https://hdl.handle.net/20.500.12390/715
https://doi.org/10.1016/j.cja.2019.02.001
Nivel de acceso:acceso abierto
Materia:Shear strain
Composite materials
Plates (structural components)
Plating
Shear deformation
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
https://purl.org/pe-repo/ocde/ford#2.00.00
id CONC_d391b8a5142b7900f1c769c47b2cbd83
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/715
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
spellingShingle Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
MANTARI J.L.
Shear strain
Composite materials
Plates (structural components)
Plating
Shear deformation
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_full Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_fullStr Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_full_unstemmed Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_sort Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
author MANTARI J.L.
author_facet MANTARI J.L.
RAMOS I.A.
MONGE J.C.
author_role author
author2 RAMOS I.A.
MONGE J.C.
author2_role author
author
dc.contributor.author.fl_str_mv MANTARI J.L.
RAMOS I.A.
MONGE J.C.
dc.subject.none.fl_str_mv Shear strain
topic Shear strain
Composite materials
Plates (structural components)
Plating
Shear deformation
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.es_PE.fl_str_mv Composite materials
Plates (structural components)
Plating
Shear deformation
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/715
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.cja.2019.02.001
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85062420773
url https://hdl.handle.net/20.500.12390/715
https://doi.org/10.1016/j.cja.2019.02.001
identifier_str_mv 2-s2.0-85062420773
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Chinese Journal of Aeronautics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Chinese Journal of Aeronautics
publisher.none.fl_str_mv Chinese Journal of Aeronautics
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883132239577088
spelling Publicationrp01200500rp01769600rp01770600MANTARI J.L.RAMOS I.A.MONGE J.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/715https://doi.org/10.1016/j.cja.2019.02.0012-s2.0-85062420773The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengChinese Journal of AeronauticsChinese Journal of Aeronauticsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Shear strainComposite materials-1Plates (structural components)-1Plating-1Shear deformation-1Carrera unified formulations-1Equivalent single layers-1Principle of virtual displacements-1https://purl.org/pe-repo/ocde/ford#2.00.00-1Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced compositesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/715oai:repositorio.concytec.gob.pe:20.500.12390/7152024-05-30 15:58:44.788https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="fa3aba1a-b73c-4a96-9e87-85d33c17640e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites</Title> <PublishedIn> <Publication> <Title>Chinese Journal of Aeronautics</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.cja.2019.02.001</DOI> <SCP-Number>2-s2.0-85062420773</SCP-Number> <Authors> <Author> <DisplayName>MANTARI J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>RAMOS I.A.</DisplayName> <Person id="rp01769" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>MONGE J.C.</DisplayName> <Person id="rp01770" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Chinese Journal of Aeronautics</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Shear strain</Keyword> <Keyword>Composite materials</Keyword> <Keyword>Plates (structural components)</Keyword> <Keyword>Plating</Keyword> <Keyword>Shear deformation</Keyword> <Keyword>Carrera unified formulations</Keyword> <Keyword>Equivalent single layers</Keyword> <Keyword>Principle of virtual displacements</Keyword> <Abstract>The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.072484
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).