Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
Descripción del Articulo
The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this p...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/715 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/715 https://doi.org/10.1016/j.cja.2019.02.001 |
Nivel de acceso: | acceso abierto |
Materia: | Shear strain Composite materials Plates (structural components) Plating Shear deformation Carrera unified formulations Equivalent single layers Principle of virtual displacements https://purl.org/pe-repo/ocde/ford#2.00.00 |
id |
CONC_d391b8a5142b7900f1c769c47b2cbd83 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/715 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
title |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
spellingShingle |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites MANTARI J.L. Shear strain Composite materials Plates (structural components) Plating Shear deformation Carrera unified formulations Equivalent single layers Principle of virtual displacements https://purl.org/pe-repo/ocde/ford#2.00.00 |
title_short |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
title_full |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
title_fullStr |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
title_full_unstemmed |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
title_sort |
Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites |
author |
MANTARI J.L. |
author_facet |
MANTARI J.L. RAMOS I.A. MONGE J.C. |
author_role |
author |
author2 |
RAMOS I.A. MONGE J.C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
MANTARI J.L. RAMOS I.A. MONGE J.C. |
dc.subject.none.fl_str_mv |
Shear strain |
topic |
Shear strain Composite materials Plates (structural components) Plating Shear deformation Carrera unified formulations Equivalent single layers Principle of virtual displacements https://purl.org/pe-repo/ocde/ford#2.00.00 |
dc.subject.es_PE.fl_str_mv |
Composite materials Plates (structural components) Plating Shear deformation Carrera unified formulations Equivalent single layers Principle of virtual displacements |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
description |
The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/715 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.cja.2019.02.001 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85062420773 |
url |
https://hdl.handle.net/20.500.12390/715 https://doi.org/10.1016/j.cja.2019.02.001 |
identifier_str_mv |
2-s2.0-85062420773 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Chinese Journal of Aeronautics |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
Chinese Journal of Aeronautics |
publisher.none.fl_str_mv |
Chinese Journal of Aeronautics |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883132239577088 |
spelling |
Publicationrp01200500rp01769600rp01770600MANTARI J.L.RAMOS I.A.MONGE J.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/715https://doi.org/10.1016/j.cja.2019.02.0012-s2.0-85062420773The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengChinese Journal of AeronauticsChinese Journal of Aeronauticsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Shear strainComposite materials-1Plates (structural components)-1Plating-1Shear deformation-1Carrera unified formulations-1Equivalent single layers-1Principle of virtual displacements-1https://purl.org/pe-repo/ocde/ford#2.00.00-1Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced compositesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/715oai:repositorio.concytec.gob.pe:20.500.12390/7152024-05-30 15:58:44.788https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="fa3aba1a-b73c-4a96-9e87-85d33c17640e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites</Title> <PublishedIn> <Publication> <Title>Chinese Journal of Aeronautics</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.cja.2019.02.001</DOI> <SCP-Number>2-s2.0-85062420773</SCP-Number> <Authors> <Author> <DisplayName>MANTARI J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>RAMOS I.A.</DisplayName> <Person id="rp01769" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>MONGE J.C.</DisplayName> <Person id="rp01770" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Chinese Journal of Aeronautics</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Shear strain</Keyword> <Keyword>Composite materials</Keyword> <Keyword>Plates (structural components)</Keyword> <Keyword>Plating</Keyword> <Keyword>Shear deformation</Keyword> <Keyword>Carrera unified formulations</Keyword> <Keyword>Equivalent single layers</Keyword> <Keyword>Principle of virtual displacements</Keyword> <Abstract>The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.072484 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).