Training with synthetic images for object detection and segmentation in real machinery images
Descripción del Articulo
Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2464 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2464 https://doi.org/10.1109/SIBGRAPI51738.2020.00038 |
| Nivel de acceso: | acceso abierto |
| Materia: | synthetic data generation deep learning object detection object segmentation http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_cc313116dacd31ca2694f22ba73ec4fc |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2464 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Training with synthetic images for object detection and segmentation in real machinery images |
| title |
Training with synthetic images for object detection and segmentation in real machinery images |
| spellingShingle |
Training with synthetic images for object detection and segmentation in real machinery images Salas A.J.C. synthetic data generation deep learning object detection object segmentation http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Training with synthetic images for object detection and segmentation in real machinery images |
| title_full |
Training with synthetic images for object detection and segmentation in real machinery images |
| title_fullStr |
Training with synthetic images for object detection and segmentation in real machinery images |
| title_full_unstemmed |
Training with synthetic images for object detection and segmentation in real machinery images |
| title_sort |
Training with synthetic images for object detection and segmentation in real machinery images |
| author |
Salas A.J.C. |
| author_facet |
Salas A.J.C. Meza-Lovon G. Fernandez M.E.L. Raposo A. |
| author_role |
author |
| author2 |
Meza-Lovon G. Fernandez M.E.L. Raposo A. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Salas A.J.C. Meza-Lovon G. Fernandez M.E.L. Raposo A. |
| dc.subject.none.fl_str_mv |
synthetic data generation |
| topic |
synthetic data generation deep learning object detection object segmentation http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
deep learning object detection object segmentation |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur. © 2020 IEEE. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2464 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/SIBGRAPI51738.2020.00038 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85099586264 |
| url |
https://hdl.handle.net/20.500.12390/2464 https://doi.org/10.1109/SIBGRAPI51738.2020.00038 |
| identifier_str_mv |
2-s2.0-85099586264 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883132559392768 |
| spelling |
Publicationrp06250600rp06251600rp06248600rp06249600Salas A.J.C.Meza-Lovon G.Fernandez M.E.L.Raposo A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2464https://doi.org/10.1109/SIBGRAPI51738.2020.000382-s2.0-85099586264Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020info:eu-repo/semantics/openAccesssynthetic data generationdeep learning-1object detection-1object segmentation-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Training with synthetic images for object detection and segmentation in real machinery imagesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2464oai:repositorio.concytec.gob.pe:20.500.12390/24642024-05-30 16:08:26.844http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="fb3d10c1-8587-4a60-a0f4-11437b782c55"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Training with synthetic images for object detection and segmentation in real machinery images</Title> <PublishedIn> <Publication> <Title>Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/SIBGRAPI51738.2020.00038</DOI> <SCP-Number>2-s2.0-85099586264</SCP-Number> <Authors> <Author> <DisplayName>Salas A.J.C.</DisplayName> <Person id="rp06250" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Meza-Lovon G.</DisplayName> <Person id="rp06251" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Fernandez M.E.L.</DisplayName> <Person id="rp06248" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Raposo A.</DisplayName> <Person id="rp06249" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>synthetic data generation</Keyword> <Keyword>deep learning</Keyword> <Keyword>object detection</Keyword> <Keyword>object segmentation</Keyword> <Abstract>Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).