Training with synthetic images for object detection and segmentation in real machinery images

Descripción del Articulo

Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation...

Descripción completa

Detalles Bibliográficos
Autores: Salas A.J.C., Meza-Lovon G., Fernandez M.E.L., Raposo A.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2464
Enlace del recurso:https://hdl.handle.net/20.500.12390/2464
https://doi.org/10.1109/SIBGRAPI51738.2020.00038
Nivel de acceso:acceso abierto
Materia:synthetic data generation
deep learning
object detection
object segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_cc313116dacd31ca2694f22ba73ec4fc
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2464
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Training with synthetic images for object detection and segmentation in real machinery images
title Training with synthetic images for object detection and segmentation in real machinery images
spellingShingle Training with synthetic images for object detection and segmentation in real machinery images
Salas A.J.C.
synthetic data generation
deep learning
object detection
object segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Training with synthetic images for object detection and segmentation in real machinery images
title_full Training with synthetic images for object detection and segmentation in real machinery images
title_fullStr Training with synthetic images for object detection and segmentation in real machinery images
title_full_unstemmed Training with synthetic images for object detection and segmentation in real machinery images
title_sort Training with synthetic images for object detection and segmentation in real machinery images
author Salas A.J.C.
author_facet Salas A.J.C.
Meza-Lovon G.
Fernandez M.E.L.
Raposo A.
author_role author
author2 Meza-Lovon G.
Fernandez M.E.L.
Raposo A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Salas A.J.C.
Meza-Lovon G.
Fernandez M.E.L.
Raposo A.
dc.subject.none.fl_str_mv synthetic data generation
topic synthetic data generation
deep learning
object detection
object segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv deep learning
object detection
object segmentation
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2464
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/SIBGRAPI51738.2020.00038
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85099586264
url https://hdl.handle.net/20.500.12390/2464
https://doi.org/10.1109/SIBGRAPI51738.2020.00038
identifier_str_mv 2-s2.0-85099586264
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883132559392768
spelling Publicationrp06250600rp06251600rp06248600rp06249600Salas A.J.C.Meza-Lovon G.Fernandez M.E.L.Raposo A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2464https://doi.org/10.1109/SIBGRAPI51738.2020.000382-s2.0-85099586264Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020info:eu-repo/semantics/openAccesssynthetic data generationdeep learning-1object detection-1object segmentation-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Training with synthetic images for object detection and segmentation in real machinery imagesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2464oai:repositorio.concytec.gob.pe:20.500.12390/24642024-05-30 16:08:26.844http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="fb3d10c1-8587-4a60-a0f4-11437b782c55"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Training with synthetic images for object detection and segmentation in real machinery images</Title> <PublishedIn> <Publication> <Title>Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/SIBGRAPI51738.2020.00038</DOI> <SCP-Number>2-s2.0-85099586264</SCP-Number> <Authors> <Author> <DisplayName>Salas A.J.C.</DisplayName> <Person id="rp06250" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Meza-Lovon G.</DisplayName> <Person id="rp06251" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Fernandez M.E.L.</DisplayName> <Person id="rp06248" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Raposo A.</DisplayName> <Person id="rp06249" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>synthetic data generation</Keyword> <Keyword>deep learning</Keyword> <Keyword>object detection</Keyword> <Keyword>object segmentation</Keyword> <Abstract>Over the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).