System identification models' fit using error histogram analysis and the Hampel filter as computational tools

Descripción del Articulo

In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameteri...

Descripción completa

Detalles Bibliográficos
Autores: Risco R., Perez D., Casaverde L.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2497
Enlace del recurso:https://hdl.handle.net/20.500.12390/2497
https://doi.org/10.1109/INTERCON50315.2020.9220230
Nivel de acceso:acceso abierto
Materia:Outliers
ARMAX
ARX
Hampel
Identification
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_c4b78953ab9f8cef929a2001c06fa499
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2497
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv System identification models' fit using error histogram analysis and the Hampel filter as computational tools
title System identification models' fit using error histogram analysis and the Hampel filter as computational tools
spellingShingle System identification models' fit using error histogram analysis and the Hampel filter as computational tools
Risco R.
Outliers
ARMAX
ARX
Hampel
Identification
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short System identification models' fit using error histogram analysis and the Hampel filter as computational tools
title_full System identification models' fit using error histogram analysis and the Hampel filter as computational tools
title_fullStr System identification models' fit using error histogram analysis and the Hampel filter as computational tools
title_full_unstemmed System identification models' fit using error histogram analysis and the Hampel filter as computational tools
title_sort System identification models' fit using error histogram analysis and the Hampel filter as computational tools
author Risco R.
author_facet Risco R.
Perez D.
Casaverde L.
author_role author
author2 Perez D.
Casaverde L.
author2_role author
author
dc.contributor.author.fl_str_mv Risco R.
Perez D.
Casaverde L.
dc.subject.none.fl_str_mv Outliers
topic Outliers
ARMAX
ARX
Hampel
Identification
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv ARMAX
ARX
Hampel
Identification
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2497
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/INTERCON50315.2020.9220230
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85095422553
url https://hdl.handle.net/20.500.12390/2497
https://doi.org/10.1109/INTERCON50315.2020.9220230
identifier_str_mv 2-s2.0-85095422553
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883054330380288
spelling Publicationrp06369600rp06368600rp06370600Risco R.Perez D.Casaverde L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2497https://doi.org/10.1109/INTERCON50315.2020.92202302-s2.0-85095422553In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020info:eu-repo/semantics/openAccessOutliersARMAX-1ARX-1Hampel-1Identification-1http://purl.org/pe-repo/ocde/ford#2.02.04-1System identification models' fit using error histogram analysis and the Hampel filter as computational toolsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2497oai:repositorio.concytec.gob.pe:20.500.12390/24972024-05-30 16:08:46.792http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="0de4896d-3c72-4f7f-a638-fe29c5350e5b"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>System identification models&apos; fit using error histogram analysis and the Hampel filter as computational tools</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/INTERCON50315.2020.9220230</DOI> <SCP-Number>2-s2.0-85095422553</SCP-Number> <Authors> <Author> <DisplayName>Risco R.</DisplayName> <Person id="rp06369" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perez D.</DisplayName> <Person id="rp06368" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Casaverde L.</DisplayName> <Person id="rp06370" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Outliers</Keyword> <Keyword>ARMAX</Keyword> <Keyword>ARX</Keyword> <Keyword>Hampel</Keyword> <Keyword>Identification</Keyword> <Abstract>In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.445699
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).