System identification models' fit using error histogram analysis and the Hampel filter as computational tools
Descripción del Articulo
In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameteri...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2497 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2497 https://doi.org/10.1109/INTERCON50315.2020.9220230 |
Nivel de acceso: | acceso abierto |
Materia: | Outliers ARMAX ARX Hampel Identification http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_c4b78953ab9f8cef929a2001c06fa499 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2497 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
title |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
spellingShingle |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools Risco R. Outliers ARMAX ARX Hampel Identification http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
title_full |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
title_fullStr |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
title_full_unstemmed |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
title_sort |
System identification models' fit using error histogram analysis and the Hampel filter as computational tools |
author |
Risco R. |
author_facet |
Risco R. Perez D. Casaverde L. |
author_role |
author |
author2 |
Perez D. Casaverde L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Risco R. Perez D. Casaverde L. |
dc.subject.none.fl_str_mv |
Outliers |
topic |
Outliers ARMAX ARX Hampel Identification http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
ARMAX ARX Hampel Identification |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2497 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/INTERCON50315.2020.9220230 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85095422553 |
url |
https://hdl.handle.net/20.500.12390/2497 https://doi.org/10.1109/INTERCON50315.2020.9220230 |
identifier_str_mv |
2-s2.0-85095422553 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883054330380288 |
spelling |
Publicationrp06369600rp06368600rp06370600Risco R.Perez D.Casaverde L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2497https://doi.org/10.1109/INTERCON50315.2020.92202302-s2.0-85095422553In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020info:eu-repo/semantics/openAccessOutliersARMAX-1ARX-1Hampel-1Identification-1http://purl.org/pe-repo/ocde/ford#2.02.04-1System identification models' fit using error histogram analysis and the Hampel filter as computational toolsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2497oai:repositorio.concytec.gob.pe:20.500.12390/24972024-05-30 16:08:46.792http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="0de4896d-3c72-4f7f-a638-fe29c5350e5b"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>System identification models' fit using error histogram analysis and the Hampel filter as computational tools</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/INTERCON50315.2020.9220230</DOI> <SCP-Number>2-s2.0-85095422553</SCP-Number> <Authors> <Author> <DisplayName>Risco R.</DisplayName> <Person id="rp06369" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perez D.</DisplayName> <Person id="rp06368" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Casaverde L.</DisplayName> <Person id="rp06370" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Outliers</Keyword> <Keyword>ARMAX</Keyword> <Keyword>ARX</Keyword> <Keyword>Hampel</Keyword> <Keyword>Identification</Keyword> <Abstract>In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.445699 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).